
Simulink® HDL Coder 1
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink HDL Coder User’s Guide

© COPYRIGHT 2006–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

ModelSim is a registered trademark of Mentor Graphics Corporation.

Incisive® is a registered trademark of Cadence Design Systems.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2006 Online only New for Version 1.0 (Release 2006b)
March 2007 Online only New for Version 1.1 (Release 2007a)

Contents

Getting Started

1
What Is Simulink HDL Coder? . 1-2

Simulink HDL Coder in the Hardware Development
Process . 1-2

Summary of Key Features . 1-3

Expected Users and Prerequisites 1-6

Software Requirements and Installation 1-7
Software Requirements . 1-7
Installing the Software . 1-8

Available Help and Demos . 1-9
Online Help . 1-9
Demos . 1-9

Introduction to HDL Code Generation

2
Overview of Exercises . 2-2

The sfir_fixed Demo Model . 2-3

Generating HDL Code Using MATLAB Commands . . . 2-6
Creating Directories and Local Model File 2-6
Initializing Model Parameters with hdlsetup 2-7
Generating a VHDL Entity from a Subsystem 2-9
Generating VHDL Test Bench Code 2-11
Verifying Generated Code . 2-12
Generating a Verilog Module and Test Bench 2-12

v

Generating HDL Code in the Simulink GUI 2-15
Creating Directories and Local Model File 2-18
Initializing Model Parameters With hdlsetup 2-19
Viewing Simulink HDL Coder Options in the Configuration

Parameters Dialog Box . 2-20
Selecting and Checking a Subsystem for HDL

Compatibility . 2-22
Generating VHDL Code . 2-25
Generating VHDL Test Bench Code 2-27
Verifying Generated Code . 2-29
Generating Verilog Model and Test Bench Code 2-29

Simulating and Verifying Generated HDL Code 2-30

Code Generation Options in the Simulink HDL
Coder GUI

3
Viewing and Setting HDL Coder Options 3-2

HDL Coder Options in the Configuration Parameters Dialog
Box . 3-2

HDL Coder Options in the Model Explorer 3-3
HDL Coder Menu . 3-4

Summary of Controls and Properties 3-6
HDL Coder Pane . 3-6
Global Settings Pane . 3-11
EDA Tool Scripts Pane . 3-19
Test Bench Pane . 3-25

Code Generation Control Files

4
Overview of Control Files . 4-2

Selectable Block Implementations . 4-3
Implementation Mappings . 4-3
Control File Demo . 4-3

vi Contents

Structure of a Control File . 4-5

Code Generation Control Objects and Methods 4-7
hdlnewcontrol . 4-7
forEach . 4-7
forAll . 4-11
set . 4-11
generateHDLFor . 4-11

Using Control Files in the Code Generation Process . . 4-13
Creating a Control File . 4-13
Associating an Existing Control File with Your Model 4-14
Detaching a Control File from Your Model 4-16

Specifying Block Implementations and Parameters in
the Control File . 4-17
Generating Selection/Action Statements with the

hdlnewforeach Function . 4-17
Blocks with Multiple Implementations 4-21

Summary of Block Implementations 4-27

Generating Bit-True Cycle-Accurate Models

5
Overview of Generated Models . 5-2

Example: Numeric Differences . 5-4

Example: Latency . 5-8

Defaults and Options for Generated Models 5-12
Defaults for Model Generation . 5-12
GUI Options . 5-13
Generated Model Properties for makehdl 5-14

vii

HDL Compatibility, Code Tracing, and Block
Support Reports

6
HDL Compatibility Checker . 6-2

Code Tracing Using the Mapping File 6-5

Supported Blocks Library . 6-8

Interfacing Subsystems and Models to HDL
Code

7
Overview of HDL Interfaces . 7-2

Generating a Black Box Interface for a Subsystem 7-3

Generating Interfaces for Referenced Models 7-6

Code Generation for HDL Cosimulation Blocks 7-7

Pass-Through and No-Op Implementations 7-9

Stateflow HDL Code Generation Support

8
Overview of Stateflow HDL Code Generation 8-2

Demos and Related Documentation 8-3

A Quick Guide to Requirements for Stateflow HDL
Code Generation . 8-5
Stateflow to Simulink Interface . 8-5

viii Contents

Data Type Usage . 8-5
Chart Initialization . 8-6
Registered Output . 8-6
Restrictions on Imported Code . 8-6
Other Restrictions . 8-7

Mapping Stateflow Chart Semantics to HDL 8-9
Software Realization of Stateflow Semantics 8-9
Hardware Realization of Stateflow Semantics 8-11
Restrictions for HDL Realization . 8-14

Using Mealy and Moore Machine Types in HDL Code
Generation . 8-16
Generating HDL for a Mealy Finite State Machine 8-17
Generating HDL Code for a Moore Finite State Machine . . 8-20

Structuring a Model for HDL Code Generation 8-25

Design Patterns Using Advanced Stateflow Features . . 8-31
Temporal Logic . 8-31
Graphical Function . 8-34
Hierarchy and Parallelism . 8-36
Stateless Charts . 8-40
Truth Tables . 8-43

Generating HDL Code with the Embedded
MATLAB Function Block

9
Introduction . 9-3

Related Documentation and Demos 9-3

Tutorial Example: Incrementer . 9-5
Example Model Overview . 9-5
Setting Up . 9-8
Creating the Model and Configuring General Model

Settings . 9-9
Adding an Embedded MATLAB Function Block to the

Model . 9-10

ix

Setting Optimal Fixed Point Options for the Embedded
MATLAB Function Block . 9-11

Programming the Embedded MATLAB Function 9-13
Constructing and Connecting the DUT_eML_Block

Subsystem . 9-16
Compiling the Model and Displaying Port Data Types 9-22
Simulating the eml_hdl_incrementer Model 9-22
Generating HDL Code . 9-23

Useful Embedded MATLAB Design Patterns for HDL . . 9-27
The eml_hdl_design_patterns Library 9-27
Efficient Fixed-Point Algorithms . 9-29
Fixed Point Bitwise Operators . 9-33
Using Persistent Variables to Model State 9-35
Creating Intellectual Property with the Embedded

MATLAB Function Block . 9-37
Modeling Control Logic and Simple Finite State Machines

. 9-38
Modeling Counters . 9-40
Modeling Hardware Elements . 9-41

Recommended Practices . 9-43
Build the Embedded MATLAB Code First 9-43
Use Optimal FIMATH Settings . 9-43
Use Optimal Fixed Point Option Settings 9-44

Language Support . 9-45
Fixed-Point Embedded MATLAB Runtime Library

Support . 9-45
Variables and Constants . 9-46
Arithmetic Operators . 9-49
Relational Operators . 9-50
Logical Operators . 9-51
Control Flow Statements . 9-51

Other Limitations . 9-53

x Contents

Generating Scripts for HDL Simulators and
Synthesis Tools

10
Overview of Script Generation for EDA Tools 10-2

Defaults for Script Generation . 10-3

Custom Script Generation . 10-4
Structure of Generated Script Files 10-4
Properties for Controlling Script Generation 10-5
Controlling Script Generation with the EDA Tool Scripts

GUI Panel . 10-8

Properties — By Category

11
Language Selection Properties . 11-2

File Naming and Location Properties 11-2

Reset Properties . 11-2

Header Comment and General Naming Properties 11-3

Script Generation Properties . 11-4

Port Properties . 11-5

Advanced Coding Properties . 11-5

Test Bench Properties . 11-7

Generated Model Properties . 11-7

xi

Properties — Alphabetical List

12

Functions — Alphabetical List

13

Examples

A
Generating HDL Code Using MATLAB Commands A-2

Generating HDL Code in the Simulink Environment . . A-2

Verifying Generated HDL Code in an HDL Simulator . . A-2

Index

xii Contents

1

Getting Started

What Is Simulink HDL Coder?
(p. 1-2)

Describes key product features and
components

Expected Users and Prerequisites
(p. 1-6)

Prerequisite knowledge expected of
users of this product

Software Requirements and
Installation (p. 1-7)

Software requirements for Simulink
HDL Coder; how to install the
product

Available Help and Demos (p. 1-9) Available documentation and demos
related to Simulink HDL Coder

1 Getting Started

What Is Simulink HDL Coder?
• “Simulink HDL Coder in the Hardware Development Process” on page 1-2

• “Summary of Key Features” on page 1-3

Simulink® HDL Coder lets you generate hardware description language
(HDL) code based on models developed in Simulink and finite-state machines
developed in Stateflow®. Simulink HDL Coder brings the Simulink
Model-Based Design approach into the domain of application-specific
integrated circuit (ASIC) and field programmable gate array (FPGA)
development. Using Simulink HDL Coder, system architects and designers
can spend more time on fine-tuning algorithms and models through rapid
prototyping and experimentation and less time on HDL coding.

Simulink HDL Coder in the Hardware Development
Process
Typically, you use Simulink to model a design intended for realization as an
ASIC or FPGA. Once satisfied that the model meets design requirements, you
run the Simulink HDL Coder compatibility checker utility to examine model
semantics and blocks for HDL code generation compatibility. You then invoke
the Simulink HDL Coder code generator, using either the MATLAB® command
line or the Simulink graphical user interface. Simulink HDL Coder generates
VHDL or Verilog code that implements the design embodied in the model.

Usually, you also generate a corresponding test bench. You can use the test
bench with HDL simulation tools such as ModelSim® to drive the generated
HDL code and evaluate its behavior. Simulink HDL Coder generates scripts
that automate the process of compiling and simulating your code in these
tools. You can also use the MathWorks Link for ModelSim or Link for
Cadence® Incisive® software to cosimulate generated HDL entities within a
Simulink model.

The test bench feature increases confidence in the correctness of the generated
code and saves time spent on test bench implementation. The design and test
process is fully iterative. At any point, you can return to the original Simulink
model, make modifications, and regenerate code.

1-2

What Is Simulink HDL Coder?

When the design and test phase of the project has been completed, you
can easily export the generated HDL code to synthesis and layout tools for
hardware realization. Simulink HDL Coder generates synthesis scripts for
the Synplify family of synthesis tools.

Extending the Code Generation Process
Simulink HDL Coder provides a number of ways to extend the code generation
process.

By attaching a code generation control file to your model, you can direct many
details of the code generation process. At the simplest level, you can use a
control file to set code generation options; such a control file could be used as
a template for code generation in your organization.

Control files also let you specify how code is generated for selected sets of
blocks within the model. Simulink HDL Coder provides alternate HDL block
implementations for a variety of blocks. You can use statements in a control
file to select from among implementations optimized for characteristics such
as speed, chip area, or low latency.

In some cases, block-specific optimizations may introduce latencies (delays)
or numeric computations (for example, saturation or rounding operations)
in the generated code that are not in the original Simulink model. To help
you evaluate such cases, Simulink HDL Coder creates a generated model
— a Simulink model that corresponds exactly to the generated HDL code.
This generated model lets you run simulations that produce results that are
bit-true to the HDL code, and whose timing is cycle-accurate with respect
to the HDL code.

You can interface Simulink HDL Coder generated HDL to existing or legacy
HDL code. One way to do this is to use a subsystem in your Simulink model
as a placeholder for an HDL entity, and generate a black box interface
(comprising I/O port definitions only) to that entity. Another way is to generate
a cosimulation interface by placing an HDL Cosimulation block in your model.

Summary of Key Features
Key features and components of Simulink HDL Coder include

1-3

1 Getting Started

• Generation of synthesizble VHDL or Verilog code from Simulink models
and Stateflow charts

• Code generation configured and initiated via graphical user interface,
MATLAB command line interface, or M-file programs

• Test bench generation (VHDL or Verilog) for validating generated code

• Generation of models that are bit-true and cycle-accurate with respect to
generated HDL code

• Numerous options for controlling the contents and style of the generated
HDL code and test bench

• Block support:

- Simulink built-in

- Signal Processing Blockset

- Link for ModelSim HDL Cosimulation block

- Link for Cadence Incisive HDL Cosimulation block

- Stateflow chart

- Embedded MATLAB Function block

- User-selectable optimized block implementations provided for commonly
used blocks

• Code generation control files support:

- Selection of alternate block implementations for specific blocks or sets of
blocks in the model

- Setting of code generation options

- Selection of the model or subsystem from which code is to be generated.

- Definition of default or template HDL code generation settings for your
organization

• Generation of subsystem-based identification comments and mapping files
for easy tracing of HDL entities back to corresponding elements of the
original model

• Generation of interfaces to existing HDL code via:

- Black box subsystem implementation

1-4

What Is Simulink HDL Coder?

- Cosimulation with ModelSim HDL simulator (requires Link for
ModelSim)

- Cosimulation with Cadence Incisive HDL simulator (requires Link for
Cadence Incisive software)

• Compatibility checker utility that examines your model for HDL code
generation compatibility, and generates HTML report with hyperlinks
to problematic blocks

• Generation of scripts for EDA tools:

- ModelSim

- Synplify

• Model features supported for code generation in Version 1.0:

- Real data types only (fixed-point and double)
(Complex data types are not supported.)

- Fixed-step, discrete, single-rate models

- Scalar and vector ports (row or column vectors only)

1-5

1 Getting Started

Expected Users and Prerequisites
Simulink HDL Coder users are system and hardware architects and designers
who develop, optimize, and verify ASICs or FPGAs. These designers are
experienced with VHDL or Verilog but can benefit from automated HDL code
generation.

Users are expected to have prerequisite knowledge in the following areas:

• Hardware design and system integration

• VHDL or Verilog

• MATLAB

• Simulink

• Simulink Fixed Point

• Signal Processing Blockset

• HDL simulators, such as ModelSim or Cadence Incisive

• Synthesis tools, such as Synplify

1-6

Software Requirements and Installation

Software Requirements and Installation
• “Software Requirements” on page 1-7

• “ Installing the Software ” on page 1-8

Before installing Simulink HDL Coder, make sure that you have the required
MathWorks software listed in “Software Requirements” on page 1-7. See also
“VHDL and Verilog Language Support” on page 1-8 to check compatibility
with HDL compilers and other tools.

Software Requirements
Simulink HDL Coder requires the following products (version numbers
correspond to MATLAB Release 2006b):

• MATLAB

• Simulink

• Simulink Fixed Point

• Fixed-Point Toolbox

The following related products are recommended for use with Simulink HDL
Coder:

• Stateflow

• Filter Design HDL Coder

Note Filter Design HDL Coder is required to generate code for the Digital
Filter block.

• Link for ModelSim

• Link for Cadence Incisive

• Signal Processing Toolbox

• Signal Processing Blockset

1-7

1 Getting Started

Software Requirements for Simulink HDL Coder Demos
To operate some demos shipped with this release, the following related
products are required:

• Filter Design Toolbox

• Filter Design HDL Coder

• Link for ModelSim

• Communications Toolbox (required to use Viterbi Decoder demo)

• Communications Blockset (required to use Viterbi Decoder demo)

VHDL and Verilog Language Support
Simulink HDL Coder is compatible with HDL compilers, simulators and other
tools that support

• VHDL versions 93 and 02

• Verilog-2001 (IEEE 1364-2001) or later

Installing the Software
For information on installing the required software listed previously, and
optional software, see the MATLAB installation documentation for your
platform.

After completing your installation, work through the examples in Chapter
2, “Introduction to HDL Code Generation”, to acquaint yourself with the
operation of the product.

1-8

Available Help and Demos

Available Help and Demos
• “Online Help” on page 1-9

• “Demos” on page 1-9

Online Help
The following online help is available:

• Online help is available in the MATLAB Help browser. Click the Simulink
HDL Coder product link in the browser’s Contents pane.

• Documentation in PDF format is available through the Simulink HDL
Coder roadmap page in the MATLAB Help browser. Click the Simulink
HDL Coder > Printable Documentation (PDF) link in the browser’s
Contents pane.

• M-help for the command line interface functions makehdl, makehdltb,
checkhdl, hdllib, and hdlsetup is available through the MATLAB doc
and help commands. For example:

help makehdl

Demos
Simulink HDL Coder provides a number of models demonstrating aspects of
HDL code generation. To access the demo models:

1 Type the following command at the MATLAB prompt:

demos

2 The Help window opens.

3 In the Demos pane on the left, select Simulink > Simulink HDL Coder.

4 The right pane displays hyperlinks to the available demos. Click the link to
the desired demo and follow the demo instructions.

1-9

1 Getting Started

1-10

2

Introduction to HDL Code
Generation

Overview of Exercises (p. 2-2) Overview of what you will learn in
the exercises in this chapter

The sfir_fixed Demo Model (p. 2-3) Description of demo model that is
used in code generation exercises

Generating HDL Code Using
MATLAB Commands (p. 2-6)

Generating VHDL and Verilog code
and test benches in the MATLAB
command line environment

Generating HDL Code in the
Simulink GUI (p. 2-15)

Generating VHDL and Verilog code
and test benches using the Simulink
Configuration Parameters dialog box

Simulating and Verifying Generated
HDL Code (p. 2-30)

Using an HDL simulator to verify
generated HDL code

2 Introduction to HDL Code Generation

Overview of Exercises
Simulink HDL Coder supports HDL code generation in your choice of
environments:

• The MATLAB Command Window supports code generation using the
makehdl, makehdltb, and other functions.

• The Simulink graphical environment (the Simulink Configuration
Parameters dialog box and/or Model Explorer) provides an integrated view
of the model simulation parameters and HDL code generation parameters
and functions.

The hands-on exercises in this chapter introduce you to the mechanics of
generating and simulating HDL code with Simulink HDL Coder, using the
same model to generate code in both environments. In a series of steps, you
will

• Configure a simple Simulink model for code generation.

• Generate VHDL code from a subsystem of the model.

• Generate a VHDL test bench and scripts for the ModelSim HDL simulator
to drive a simulation of the model.

• Compile and execute the model and test bench code in ModelSim.

• Generate and simulate Verilog code from the same model.

• Check a model for compatibility with Simulink HDL Coder.

2-2

The sfir_fixed Demo Model

The sfir_fixed Demo Model
Simulink HDL Coder provides the sfir_fixed demo model as a source model
for HDL code generation. The model simulates a symmetric finite impulse
response (FIR) filter algorithm, implemented with fixed-point arithmetic. The
following figure shows the top level of the model.

This model employs a division of labor that is useful in HDL design:

• The symmetric_fir subsystem, which implements the filter algorithm, is
the device under test (DUT). An HDL entity will be generated, tested, and
eventually synthesized from this subsystem.

• The top-level model components that drive the subsystem work as a test
bench.

2-3

2 Introduction to HDL Code Generation

The top-level model generates 16-bit fixed-point input signals for the
symmetric_fir subsystem. The Signal From Workspace block generates a
test input (stimulus) signal for the filter. The four Constant blocks provide
filter coefficients.

The Scope blocks are used in Simulink simulation only. They are virtual
blocks, and do not generate any HDL code.

The following figure shows the symmetric_fir subsystem.

Simulink propagates appropriate fixed-point data types throughout the
subsystem. Inputs inherit the data types of the signals presented to them.
Where required, internal rules of the blocks determine the correct output data
type, given the input data types and the operation performed (for example,
the Product blocks output 32-bit signals).

2-4

The sfir_fixed Demo Model

The filter outputs a 32-bit fixed-point result at the y_out port, and also
replicates its input (after passing it through several delay stages) at the
delayed_x_out port.

In the exercises that follow, you generate VHDL code that implements the
symmetric_fir subsystem as an entity. You then generate a test bench
from the top-level model. The test bench drives the generated entity, for the
required number of clock steps, with stimulus data generated from the Signal
From Workspace block.

2-5

2 Introduction to HDL Code Generation

Generating HDL Code Using MATLAB Commands
This exercise provides a step-by-step introduction to the Simulink HDL
Coder code and test bench generation commands, their arguments, and the
files created by the code generator. The exercise assumes that you have
familiarized yourself with the demo model (see “The sfir_fixed Demo Model”
on page 2-3).

The exercise walks you through command line based code generation in the
following sections:

• “Creating Directories and Local Model File” on page 2-6

• “Initializing Model Parameters with hdlsetup” on page 2-7

• “Generating a VHDL Entity from a Subsystem” on page 2-9

• “Generating VHDL Test Bench Code” on page 2-11

• “Verifying Generated Code” on page 2-29

• “Generating a Verilog Module and Test Bench” on page 2-12

Creating Directories and Local Model File
Make a local copy of the demo model and store it in a working directory, as
follows.

1 Start MATLAB.

2 Create a directory named sl_hdlcoder_work, for example:

mkdir D:\work\sl_hdlcoder_work

The sl_hdlcoder_work directory will store a local copy of the demo model
and to store directories and code generated by Simulink HDL Coder. The
location of the directory does not matter, except that it should not be within
the MATLAB directory tree.

3 Make the sl_hdlcoder_work directory your working directory, for example:

cd D:\work\sl_hdlcoder_work

2-6

Generating HDL Code Using MATLAB Commands

4 To open the demo model, type the following command at the MATLAB
prompt:

demos

5 The Help window opens. In the Demos pane on the left, click the + for
Simulink. Then click the + for Simulink HDL Coder. Then double-click
the list entry for the Symmetric FIR Filter Demo.

The sfir_fixed model opens.

6 Select Save As from the Simulink File menu and save a local copy of
sfir_fixed.mdl. to your working directory.

7 Leave the sfir_fixed model open and proceed to the next section.

Initializing Model Parameters with hdlsetup
Before generating code, you must set some parameters of the model. Rather
than doing this manually, use the Simulink HDL Coder M-file utility,
hdlsetup.m. The hdlsetup command uses the Simulink set_param function
to set up models for HDL code generation quickly and consistently.

To set the model parameters:

1 At the MATLAB command prompt, type

hdlsetup('sfir_fixed')

2 Select Save from the Simulink File menu, to save the model with its new
settings.

Before continuing with code generation, consider the settings that hdlsetup
applies to the model.

hdlsetup configures Simulink Solver options that are recommended or
required by Simulink HDL Coder. These are

• Type: Fixed-step. Simulink HDL Coder does not currently support
variable-step solvers.

2-7

2 Introduction to HDL Code Generation

• Solver: discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually the correct one for simulating
discrete systems.

• Tasking mode: SingleTasking. Simulink HDL Coder does not currently
support models that execute in multitasking mode.

hdlsetup also configures the model start and stop times and fixed-step size as
follows:

• Start Time: 0.0 s

• Stop Time: 10 s

• Fixed step size (fundamental periodic sample time): auto

Setting Fixed step size to auto causes Simulink to choose the step size,
based on the sample times specified in the model. In the demo model, only
the Signal From Workspace block specifies an explicit sample time (1 s); all
other blocks inherit this sample time.

The model start and stop times determine the total simulation time. This
in turn determines the size of data arrays that are generated to provide
stimulus and output data for generated test benches. For the demo model,
computation of 10 seconds of test data does not take a significant amount of
time. Computation of sample values for more complex models can be time
consuming. In such cases, you may want to decrease the total simulation time.

The remaining parameters set by hdlsetup affect Simulink error severity
levels, data logging, and model display options. If you want to view the
complete set of model parameters affected by hdlsetup, open hdlsetup.m in
the MATLAB editor.

The model parameter settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications. For
example, hdlsetup sets a default Simulation stop time of 10 s. A total
simulation time of 1000 s would be more realistic for a test of the sfir_fixed
demo model. If you would like to change the simulation time, enter the
desired value into the Simulation stop time field of the Simulink window.

2-8

Generating HDL Code Using MATLAB Commands

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of user-settable model
parameters.

Generating a VHDL Entity from a Subsystem
In this section, you will use the makehdl function to generate code for a VHDL
entity from the symmetric_fir subsystem of the demo model. makehdl also
generates script files for third-party HDL simulation and synthesis tools.

makehdl lets you specify numerous properties that control various features
of the generated code. In this example, you will use defaults for all makehdl
properties.

Before generating code, make sure that you have completed the steps
described in “Creating Directories and Local Model File” on page 2-6 and
“Initializing Model Parameters with hdlsetup” on page 2-7.

To generate code:

1 Select Current Directory from the Desktop menu in the MATLAB
window. This displays the MATLAB Current Directory browser, which
lets you easily access your working directory and the files that will be
generated within it.

2 At the MATLAB prompt, type the command

makehdl('sfir_fixed/symmetric_fir')

This command directs Simulink HDL Coder to generate code from the
symmetric_fir subsystem within the sfir_fixed model, using default
values for all properties.

3 Simulink HDL Coder generates code and displays progress messages. The
process should complete successfully with the message

HDL Code Generation Complete.

Observe that the names of generated files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB editor.

2-9

2 Introduction to HDL Code Generation

makehdl compiles the model before generating code. Depending on model
display options (for example, sample time colors, port data types, etc.), the
appearance of the model may change after code generation.

4 By default, makehdl generates VHDL code. Code files and scripts are
written to a target directory. The default target directory is a subdirectory
of your working directory, named hdlsrc.

A folder icon for the hdlsrc directory is now visible in the Current
Directory browser. To view generated code and script files, double-click
the hdlsrc folder icon.

5 The files that makehdl has generated in the hdlsrc directory are

• symmetric_fir.vhd: VHDL code. This file contains an entity definition
and RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: ModelSim compilation script (vcom
command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify synthesis script

• symmetric_fir_map.txt: Mapping file. This report file maps generated
entities (or modules) to the Simulink subsystems that generated them
(see “Code Tracing Using the Mapping File” on page 6-5).

6 To view the generated VHDL code in the MATLAB editor, double-click the
symmetric_fir.vhd file icon in the Current Directory browser.

At this point it is suggested that you study the ENTITY and ARCHITECTURE
definitions while referring to “HDL Code Generation Defaults” on
page 13-13 in the makehdl reference documentation. The reference
documentation describes the default naming conventions and
correspondences between the elements of a Simulink model (subsystems,
ports, signals, etc.) and elements of generated HDL code.

7 Before proceeding to the next section, close any files you have opened
in the MATLAB editor. Then, click the Go Up One Level button in the
Current Directory browser, to set the current directory back to your
sl_hdlcoder_work directory.

8 Leave the sfir_fixed model open and proceed to the next section.

2-10

Generating HDL Code Using MATLAB Commands

Generating VHDL Test Bench Code
In this section, you use the Simulink HDL Coder test bench generation
function, makehdltb, to generate a VHDL test bench. The test bench is
designed to drive and verify the operation of the symmetric_fir entity that
was generated in the previous section. A generated test bench includes

• Stimulus data generated by signal sources connected to the entity under
test.

• Output data generated by the entity under test. During a test bench run,
this data is compared to the outputs of the VHDL model, for verification
purposes.

• Clock, reset, and clock enable inputs to drive the entity under test.

• A component instantiation of the entity under test.

• Code to drive the entity under test and compare its outputs to the expected
data.

In addition, makehdltb generates ModelSim scripts to compile and execute
the test bench.

This exercise assumes that your working directory is the same as that used in
the previous section. This directory now contains an hdlsrc folder containing
the previously generated code.

To generate a test bench:

1 At the MATLAB prompt, type the command

makehdltb('sfir_fixed/symmetric_fir')

This command generates a test bench that is designed to interface to and
validate code generated from symmetric_fir (or from a subsystem with a
functionally identical interface). By default, VHDL test bench code, as well
as scripts, are generated in the hdlsrc target directory.

2 Simulink HDL Coder generates code and displays progress messages. The
process should complete successfully with the message

HDL TestBench Generation Complete.

2-11

2 Introduction to HDL Code Generation

3 To view generated test bench and script files, double-click the hdlsrc folder
icon in the Current Directory browser. Alternatively, you can click the
hyperlinked names of generated files in the code test bench generation
progress messages.

The files generated by makehdltb are

• symmetric_fir_tb.vhd: VHDL test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: ModelSim compilation script (vcom
commands). This script compiles and loads both the entity to be tested
(symmetric_fir.vhd) and the test bench code (symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: ModelSim script to initialize the simulator,
set up wave window signal displays, and run a simulation.

4 If you want to view the generated test bench code in the MATLAB editor,
double-click the symmetric_fir.vhd file icon in the Current Directory
browser. You may want to study the code while referring to the makehdltb
reference documentation, which describes the default actions of the test
bench generator.

5 Before proceeding to the next section, close any files you have opened
in the MATLAB editor. Then, click the Go Up One Level button in the
Current Directory browser, to set the current directory back to your
sl_hdlcoder_work directory.

Verifying Generated Code
You can now take the previously generated code and test bench to an HDL
simulator for simulated execution and verification of results. See “Simulating
and Verifying Generated HDL Code” on page 2-30 for an example of how to
use generated test bench and script files with the Mentor Graphics HDL
simulator, ModelSim SE/PE.

Generating a Verilog Module and Test Bench
The procedures for generating Verilog code differ only slightly from those for
generating VHDL code. This section provides an overview of the command
syntax and the generated files.

2-12

Generating HDL Code Using MATLAB Commands

Generating a Verilog Module
By default, makehdl generates VHDL code. To override the default and
generate Verilog code, you must pass in a property/value pair to makehdl,
setting the TargetLanguage property to 'verilog', as in this example.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The previous command generates Verilog source code, as well as ModelSim
and Synplify scripts, in the default target directory, hdlsrc.

The files generated by this example command are

• symmetric_fir.v: Verilog code. This file contains a Verilog module
implementing the symmetric_fir subsystem.

• symmetric_fir_compile.do: ModelSim compilation script (vlog
command) to compile the generated Verilog code.

• symmetric_fir_synplify.tcl: Synplify synthesis script.

• symmetric_fir_map.txt.: Mapping file. This report file maps generated
entities (or modules) to the Simulink subsystems that generated them (see
“Code Tracing Using the Mapping File” on page 6-5).

Generating and Executing a Verilog Test Bench
The makehdltb syntax for overriding the target language is exactly the same
as that for makehdl. The following example generates Verilog test bench code
to drive the Verilog module, symmetric_fir, in the default target directory.

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The files generated by this example command are

• symmetric_fir_tb.v: Verilog test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: ModelSim compilation script (vlog
commands). This script compiles and loads both the entity to be tested
(symmetric_fir.v) and the test bench code (symmetric_fir_tb.v).

2-13

2 Introduction to HDL Code Generation

• symmetric_fir_tb_sim.do: ModelSim script to initialize the simulator, set
up wave window signal displays, and run a simulation.

The following listing shows the commands and responses from a ModelSim
test bench session using the generated scripts.

ModelSim>vlib work

ModelSim> do symmetric_fir_tb_compile.do

Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

-- Compiling module symmetric_fir

#

Top level modules:

symmetric_fir

Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

-- Compiling module symmetric_fir_tb

#

Top level modules:

symmetric_fir_tb

ModelSim>do symmetric_fir_tb_sim.do

vsim work.symmetric_fir_tb

Loading work.symmetric_fir_tb

Loading work.symmetric_fir

**** Test Complete. ****

Break at

d:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

Simulation Breakpoint:Break at

d:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

MACRO ./symmetric_fir_tb_sim.do PAUSED at line 14

2-14

Generating HDL Code in the Simulink GUI

Generating HDL Code in the Simulink GUI
• “Creating Directories and Local Model File” on page 2-18

• “Initializing Model Parameters With hdlsetup” on page 2-19

• “Viewing Simulink HDL Coder Options in the Configuration Parameters
Dialog Box” on page 2-20

• “Selecting and Checking a Subsystem for HDL Compatibility” on page 2-22

• “Generating VHDL Code” on page 2-25

• “Generating VHDL Test Bench Code” on page 2-27

• “Verifying Generated Code” on page 2-29

• “Generating Verilog Model and Test Bench Code” on page 2-29

Simulink provides visual access to options and parameters that affect HDL
code generation, within the framework of a Simulink configuration set. You
can view and edit these options in the Simulink Configuration Parameters
dialog box, or in the Simulink Model Explorer.

The following figure shows the top-level HDL Coder options pane as
displayed in the Configuration Parameters dialog box.

2-15

2 Introduction to HDL Code Generation

The following figure shows the top-level HDL Coder options pane as
displayed in the Model Explorer.

2-16

Generating HDL Code in the Simulink GUI

If you are not familiar with Simulink configuration sets and how to view
and edit them in the Configuration Parameters dialog box, see the following
sections of the Simulink documentation:

• “Configuration Sets”

• “Configuration Parameters Dialog Box”

If you are not familiar with the Model Explorer, see “Exploring, Searching,
and Browsing Models” in the Simulink documentation.

In the hands-on code generation exercises that follow, you will use the
Configuration Parameters dialog box view of Simulink HDL Coder options
and controls. The exercises use the sfir_fixed demo model (see “The
sfir_fixed Demo Model” on page 2-3) in basic code generation steps, including

• “Creating Directories and Local Model File” on page 2-18

• “Initializing Model Parameters With hdlsetup” on page 2-19

2-17

2 Introduction to HDL Code Generation

• “Viewing Simulink HDL Coder Options in the Configuration Parameters
Dialog Box” on page 2-20

• “Selecting and Checking a Subsystem for HDL Compatibility” on page 2-22

• “Generating VHDL Code” on page 2-25

• “Generating VHDL Test Bench Code” on page 2-27

• “Verifying Generated Code” on page 2-29

• “Generating Verilog Model and Test Bench Code” on page 2-29

Creating Directories and Local Model File
Start by setting up a working directory and making a copy of the sfir_fixed
demo model:

1 Start MATLAB.

2 Create a directory named sl_hdlcoder_work, for example:

mkdir D:\work\sl_hdlcoder_work

You will use sl_hdlcoder_work to store a local copy of the demo model
and to store directories and code generated by Simulink HDL Coder. The
location of the directory does not matter, except that it should not be within
the MATLAB directory tree.

3 Make the sl_hdlcoder_work directory your working directory, for example:

cd D:\work\sl_hdlcoder_work

4 To open the demo model, type the following command at the MATLAB
prompt:

demos

The Help window opens.

5 In the Demos pane on the left, click the + for Simulink. Then click the
+ for Simulink HDL Coder. Then double-click the list entry for the
Symmetric FIR Filter Demo.

2-18

Generating HDL Code in the Simulink GUI

The sfir_fixed model opens.

6 Select Save As from the Simulink File menu and save a local copy of
sfir_fixed.mdl to your working directory.

7 Leave the sfir_fixed model open and proceed to the next section.

Initializing Model Parameters With hdlsetup
Before generating code, you must set some parameters of the model. Rather
than doing this manually, use the Simulink HDL Coder M-file utility,
hdlsetup.m. The hdlsetup command uses the Simulink set_param function
to set up models for HDL code generation quickly and consistently.

To set the model parameters:

1 At the MATLAB command prompt, type

hdlsetup('sfir_fixed')

2 Select Save from the Simulink File menu, to save the model with its new
settings.

Before continuing with code generation, consider the settings that hdlsetup
applies to the model.

hdlsetup configures Simulink Solver options that are recommended or
required by Simulink HDL Coder. These are

• Type: Fixed-step. Simulink HDL Coder does not currently support
variable-step solvers.

• Solver: discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually the correct one for simulating
discrete systems.

• Tasking mode: SingleTasking. Simulink HDL Coder does not currently
support models that execute in multitasking mode.

hdlsetup also configures the model start and stop times and fixed-step size as
follows:

2-19

2 Introduction to HDL Code Generation

• Start Time: 0.0 s

• Stop Time: 10 s

• Fixed step size (fundamental periodic sample time): auto

Setting Fixed step size to auto causes Simulink to choose the step size,
based on the sample times specified in the model. In the demo model, only
the Signal From Workspace block specifies an explicit sample time (1 s); all
other blocks inherit this sample time.

The model start and stop times determine the total simulation time. This
in turn determines the size of data arrays that are generated to provide
stimulus and output data for generated test benches. For the demo model,
computation of 10 seconds of test data does not take a significant amount of
time. Computation of sample values for more complex models can be time
consuming. In such cases, you may want to decrease the total simulation time.

The remaining parameters set by hdlsetup affect Simulink error severity
levels, data logging, and model display options. If you want to view the
complete set of model parameters affected by hdlsetup, open hdlsetup.m in
the MATLAB editor.

The model parameter settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications. For
example, hdlsetup sets a default Simulation stop time of 10 s. A total
simulation time of 1000 s would be more realistic for a test of the sfir_fixed
demo model. If you would like to change the simulation time, enter the
desired value into the Simulation stop time field of the Simulink window.

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of user-settable model
parameters.

Viewing Simulink HDL Coder Options in the
Configuration Parameters Dialog Box
The Simulink HDL Coder option settings are a category of the model’s active
configuration set. You can view and edit these options in the Configuration
Parameters dialog box, or in the Simulink Model Explorer. This discussion
uses the Configuration Parameters dialog box.

2-20

Generating HDL Code in the Simulink GUI

To access the Simulink HDL Coder settings:

1 Select Configuration Parameters from the Simulation menu in the
sfir_fixed model window.

The Configuration Parameters dialog box opens with the Solver options
pane displayed, as shown in the following figure.

2 Observe that the Select tree in the left panel of the dialog box includes
an HDL Coder category, as shown.

3 Click the HDL Coder category in the Select tree. The HDL Coder pane
is displayed, as shown in the following figure.

2-21

2 Introduction to HDL Code Generation

The HDL Coder pane contains top-level options and buttons that control
the HDL code generation process. Several other categories of options are
available under the HDL Coder entry in the Select tree. This exercise
uses a small subset of these options, leaving the others at their default
settings.

“Summary of Controls and Properties” on page 3-6 summarizes all the
options available in the HDL Coder category.

Selecting and Checking a Subsystem for HDL
Compatibility
Simulink HDL Coder generates code from either the current model or from
a subsystem at the root level of the current model. You use the Generate
HDL for menu to select the model or subsystem from which code is to be
generated. Each entry in the menu shows the full Simulink path to the model
or one of its subcomponents.

2-22

Generating HDL Code in the Simulink GUI

The sfir_fixed demo model is configured with the sfixed_fir/symmetric_fir
subsystem selected for code generation, as shown in the following figure.

If this is not the case, make sure that the symmetric_fir subsystem is
selected for code generation, as follows:

1 Select sfixed_fir/symmetric_fir from the Generate HDL for menu.

2 Click Apply. The dialog box should now appear as shown in the following
figure.

2-23

2 Introduction to HDL Code Generation

To check HDL compatibility for the subsystem:

1 Click the Run Compatibility Checker button.

2 The HDL compatibility checker examines the system selected in the
Generate HDL for menu for any compatibility problems. In this case, the
selected subsystem is fully HDL-compatible, and the compatibility checker
displays the following message in the MATLAB Command Window.

Starting HDL Check.
HDL Check Complete with 0 errors, warnings and messages.

3 The compatibility checker also displays an HTML report in a Web browser,
as shown in the following figure.

2-24

Generating HDL Code in the Simulink GUI

Generating VHDL Code
The top-level HDL Coder options are now set as follows:

• The Generate HDL for field specifies the sfixed_fir/symmetric_fir
subsystem for code generation.

• The Language field specifies (by default) generation of VHDL code.

• The Directory field specifies a target directory that stores generated code
files and scripts. The default target directory is a subdirectory of your
working directory, named hdlsrc.

The following figure shows these settings.

2-25

2 Introduction to HDL Code Generation

Before generating code, select Current Directory from the Desktop menu
in the MATLAB window. This displays the MATLAB Current Directory
browser, which lets you easily access your working directory and the files that
will be generated within it.

To generate code:

1 Click the Generate button.

2 Simulink HDL Coder generates code and displays progress messages. The
process should complete successfully with the message

HDL Code Generation Complete.

Observe that the names of generated files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB editor.

Simulink HDL Coder compiles the model before generating code.
Depending on model display options (for example, sample time colors,

2-26

Generating HDL Code in the Simulink GUI

port data types, etc.), the appearance of the model may change after code
generation.

3 A folder icon for the hdlsrc directory is now visible in the Current
Directory browser. To view generated code and script files, double-click
the hdlsrc folder icon.

4 The files that were generated in the hdlsrc directory are

• symmetric_fir.vhd: VHDL code. This file contains an entity definition
and RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: ModelSim compilation script (vcom
command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify synthesis script.

• symmetric_fir_map.txt: Mapping file. This report file maps generated
entities (or modules) to the Simulink subsystems that generated them
(see “Code Tracing Using the Mapping File” on page 6-5).

5 To view the generated VHDL code in the MATLAB editor, double-click the
symmetric_fir.vhd file icon in the Current Directory browser.

At this point it is suggested that you study the ENTITY and ARCHITECTURE
definitions while referring to “HDL Code Generation Defaults” on
page 13-13 in the makehdl reference documentation. The reference
documentation describes the default naming conventions and
correspondences between the elements of a Simulink model (subsystems,
ports, signals, etc.) and elements of generated HDL code.

6 Before proceeding to the next section, close any files you have opened
in the MATLAB editor. Then, click the Go Up One Level button in the
Current Directory browser, to set the current directory back to your
sl_hdlcoder_work directory.

Generating VHDL Test Bench Code
At this point, the Generate HDL for, Language, and Directory fields are
set as they were in the previous section. Accordingly, you can now generate
VHDL test bench code to drive the VHDL code generated previously for the
sfixed_fir/symmetric_fir subsystem. The code will be written to the same
target directory as before.

2-27

2 Introduction to HDL Code Generation

To generate a test bench:

1 Click the Test Bench entry in the HDL Coder list in the Select tree. The
Test Bench pane is displayed, as shown in the following figure.

2 Click the Generate Test bench button.

3 Simulink HDL Coder generates code and displays progress messages in
the MATLAB window. The process should complete successfully with the
message

HDL TestBench Generation Complete.

4 The files that were generated in the hdlsrc directory are

• symmetric_fir_tb.vhd: VHDL test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: ModelSim compilation script (vcom
commands). This script compiles and loads both the entity to be tested
(symmetric_fir.vhd) and the test bench code (symmetric_fir_tb.vhd).

2-28

Generating HDL Code in the Simulink GUI

• symmetric_fir_tb_sim.do: ModelSim script to initialize the simulator,
set up wave window signal displays, and run a simulation.

Verifying Generated Code
You can now take the generated code and test bench to an HDL simulator
for simulated execution and verification of results. See “Simulating and
Verifying Generated HDL Code” on page 2-30 for an example of how to
use generated test bench and script files with the Mentor Graphics HDL
simulator, ModelSim SE/PE.

Generating Verilog Model and Test Bench Code
The procedure for generating Verilog code is the same as for generating
VHDL code (see “Generating a VHDL Entity from a Subsystem” on page 2-9
and “Generating VHDL Test Bench Code” on page 2-11), except that you
should select verilog from the Language field of the HDL Coder options,
as shown in the following figure.

2-29

2 Introduction to HDL Code Generation

Simulating and Verifying Generated HDL Code

Note This section requires the use of the Mentor Graphics HDL simulator,
ModelSim SE/PE.

This section assumes that you have generated code from the sfir_fixed
demo model as described in either of the following exercises:

• “Generating HDL Code Using MATLAB Commands ” on page 2-6

• “Generating HDL Code in the Simulink GUI” on page 2-15

In this section you compile and run a simulation of the previous generated
model and test bench code in ModelSim. The scripts generated by Simulink
HDL Coder let you do this with just a few simple commands. The procedure is
the same, whether you generated code in the command line environment or in
the Simulink environment.

To run the simulation:

1 Start ModelSim.

2 Set the ModelSim working directory to the directory in which you
previously generated code.

ModelSim>cd D:/work/sl_hdlcoder_work/hdlsrc

3 Use the generated compilation script to compile and load the generated
model and text bench code. The following listing shows the command and
responses from ModelSim.

ModelSim>do symmetric_fir_tb_compile.do

Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

-- Loading package standard

-- Loading package std_logic_1164

-- Loading package numeric_std

-- Compiling entity symmetric_fir

-- Compiling architecture rtl of symmetric_fir

Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

2-30

Simulating and Verifying Generated HDL Code

-- Loading package standard

-- Loading package std_logic_1164

-- Loading package numeric_std

-- Compiling package symmetric_fir_tb_pkg

-- Compiling package body symmetric_fir_tb_pkg

-- Loading package symmetric_fir_tb_pkg

-- Loading package symmetric_fir_tb_pkg

-- Compiling entity symmetric_fir_tb

-- Compiling architecture rtl of symmetric_fir_tb

-- Loading entity symmetric_fir

4 Use the generated simulation script to execute the simulation. The
following listing shows the command and responses from ModelSim. The
warning messages are benign.

ModelSim>do symmetric_fir_tb_sim.do

vsim work.symmetric_fir_tb

Loading D:\Applications\ModelTech_6_0\win32/../std.standard

Loading D:\Applications\ModelTech_6_0\win32/../ieee.std_logic_1164(body)

Loading D:\Applications\ModelTech_6_0\win32/../ieee.numeric_std(body)

Loading work.symmetric_fir_tb_pkg(body)

Loading work.symmetric_fir_tb(rtl)

Loading work.symmetric_fir(rtl)

** Warning: NUMERIC_STD."<": metavalue detected, returning FALSE

Time: 0 ns Iteration: 0 Instance: /symmetric_fir_tb

.

.

.

** Warning: NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

Time: 0 ns Iteration: 1 Instance: /symmetric_fir_tb

** Note: **************TEST COMPLETED **************

Time: 140 ns Iteration: 1 Instance: /symmetric_fir_tb

The test bench termination message indicates that the simulation has run
to completion successfully, without any comparison errors.

** Note: **************TEST COMPLETED **************

5 The simulation script displays all inputs and outputs in the model
(including the reference signals y_out_ref and delayed_x_out_ref)

2-31

2 Introduction to HDL Code Generation

in the ModelSim wave window. The following figure shows the signals
displayed in the wave window.

6 Exit ModelSim when you are through viewing signals.

7 Close any files you have opened in the MATLAB editor. Then, click the Go
Up One Level button in the Current Directory browser, to set the current
directory back to your sl_hdlcoder_work directory.

2-32

3

Code Generation Options in
the Simulink HDL Coder
GUI

Viewing and Setting HDL Coder
Options (p. 3-2)

HDL options in the Simulink
Configuration Parameters dialog box
and Model Explorer; the HDL Coder
context menu; pointers to related
information

Summary of Controls and Properties
(p. 3-6)

Summary of GUI properties
and options, with links to the
corresponding makehdl and
makehdltb properties

3 Code Generation Options in the Simulink HDL Coder GUI

Viewing and Setting HDL Coder Options
The Simulink Configuration Parameters dialog box and the Simulink Model
Explorer let you view and set the HDL code generation options, parameters,
and controls within a Simulink configuration set. The following topics
summarize these options:

• “HDL Coder Options in the Configuration Parameters Dialog Box” on
page 3-2

• “HDL Coder Options in the Model Explorer” on page 3-3

• “HDL Coder Menu” on page 3-4

HDL Coder Options in the Configuration Parameters
Dialog Box
The following figure shows the top-level HDL Coder options pane as
displayed in the Configuration Parameters dialog box. To open this dialog box,
select Simulation > Configuration Parameters in the Simulink window.
Then select HDL Coder from the list on the left.

3-2

Viewing and Setting HDL Coder Options

If you are not familiar with Simulink configuration sets and how to view and
edit them in the Configuration Parameters dialog box, see the “Configuration
Sets” and “Configuration Parameters Dialog Box” sections of the Simulink
documentation.

Note When the HDL Coder options pane of the Configuration Parameters
dialog box is selected, clicking the Help button displays general help for the
Configuration Parameters dialog box.

HDL Coder Options in the Model Explorer
The following figure shows the top-level HDL Coder options pane as
displayed in the Dialog pane of the Model Explorer.

To view this dialog box, select View > Model Explorer in the Simulink
window. Then select your model’s active configuration set in the Model

3-3

3 Code Generation Options in the Simulink HDL Coder GUI

Hierarchy tree on the left. Then, select HDL Coder from the list in the
Contents pane.

When the HDL Coder options pane is selected in the Model Explorer, clicking
the Help button displays the documentation specific to the current tab.

If you are not familiar with the Model Explorer, see “Exploring, Searching,
and Browsing Models” in the Simulink documentation.

HDL Coder Menu
The HDL Coder submenu of the Simulink Tools menu (see the following
figure) provides shortcuts to the HDL code generation options. You can also
use this menu to initiate code generation.

3-4

Viewing and Setting HDL Coder Options

The HDL Coder submenu options are

• Options: Open the HDL Coder options pane in the Configuration
Parameters dialog box.

• Generate HDL: Initiate HDL code generation; equivalent to the Generate
button in the Configuration Parameters dialog box or Model Explorer.

• Generate Test Bench: Initiate test bench code generation; equivalent to
the Generate Test Bench button in the Configuration Parameters dialog
box or Model Explorer. If you do not select a subsystem from the top (root)
level of the current Simulink model in the Generate HDL for menu, the
Generate Test Bench menu option is disabled.

3-5

3 Code Generation Options in the Simulink HDL Coder GUI

Summary of Controls and Properties
Each code generation option displayed on the GUI corresponds to a makehdl
or makehdltb property. The tables in each of the following sections contain
hyperlinks to the appropriate property or function reference pages.

Illustrations show the default settings for all options.

The following sections summarize controls and properties in each pane of the
Simulink HDL Coder GUI, as displayed in the Configuration Parameters
dialog box:

• “HDL Coder Pane” on page 3-6

• “Global Settings Pane” on page 3-11

• “EDA Tool Scripts Pane” on page 3-19

• “Test Bench Pane” on page 3-25

HDL Coder Pane
The top-level HDL Coder pane contains buttons that initiate code generation
and compatibility checking, and sets parameters that affect overall operation
of code generation.

3-6

Summary of Controls and Properties

Main Pane

Control Description

Generate Initiates code generation for the system
selected in the Generate HDL for menu. See
also makehdl.

3-7

3 Code Generation Options in the Simulink HDL Coder GUI

Control Description

Run Compatibility Checker Invokes the compatibility checker to examine
the system selected in the Generate HDL for
menu for any compatibility problems. See also
checkhdl.

Restore Factory Defaults Sets all Simulink HDL Coder properties to
their default values. Unlinks the current
code generation file (if any) from the
model, and clears the File name field.
Restore Factory Defaults resets all HDL
code generation settings. This action cannot
be cancelled or undone. To recover previous
settings, you must close the model without
saving it, and then reopen it.

Code Generation Control File Pane
This pane contains options and controls that let you attach a code generation
control file to your model. See Chapter 4, “Code Generation Control Files” for
a detailed discussion of the structure and use of control files.

Control Description

File Name Displays the path and file name of the
currently selected control file (if any). This is a
display-only field. To select a control file, use
the Load button. To clear the File Name field
and unlink the current control file, use the
Restore Factory Defaults button.

3-8

Summary of Controls and Properties

Control Description

Load When you click the Load button, a standard
file selection dialog box opens. You can then
navigate to and select a control file and load it
into memory.

Save When you click the Save button, a
standard file save dialog box opens. You
can then save current Simulink HDL
Coder settings to a specified control file.
A full path to the control file is saved. If
you want to specify a relative path, use the
HDLControlFiles property of the makehdl
command. (See “Using Control Files in the
Code Generation Process” on page 4-13).

Target Pane
This pane contains top-level code generation options.

Option Description

Generate HDL for This pop-up menu selects the subsystem or
model from which code is generated. The menu
displays the Simulink path to the root model
and to all root-level subsystems in the model.
See also makehdl.

3-9

3 Code Generation Options in the Simulink HDL Coder GUI

Option Description

Language This pop-up menu selects the language (VHDL
or Verilog) in which code is generated. The
selected language is referred to as the target
language. The default target language is
VHDL. See also TargetLanguage.

Directory

Browse

Specifies the directory into which code is
generated. The selected directory is referred
to as the target directory. The default target
directory is a subdirectory of your working
directory, named hdlsrc. You can enter a path
to the target directory, or click the Browse
button to navigate to and select a directory. See
also TargetDirectory.

Code Generation Output Pane
This pane contains options related to the creation and display of generated
models. See also Chapter 5, “Generating Bit-True Cycle-Accurate Models”.

Option Property

Generate HDL code Generate HDL code without displaying the
generated model. This is the default.

Display generated model only Display the generated model without
generating HDL code.

Generate HDL code and display generated
model

Display the generated model after HDL code
generation completes.

3-10

Summary of Controls and Properties

Global Settings Pane
The Global Settings pane lets you set options to specify detailed
characteristics of the generated code, such as HDL element naming and
whether certain optimizations are applied.

Clock Settings Pane
The Clock Settings pane contains options related to the operation of clock
and reset signals in the generated HDL code.

3-11

3 Code Generation Options in the Simulink HDL Coder GUI

Option Description

Reset Type Specifies whether to use asynchronous or
synchronous reset logic when generating HDL
code for registers. Default: Asynchronous. See
also ResetType.

Reset Asserted Level Specifies whether the asserted (active) level
of reset input signal is active-high (1) or
active-low (0). Default: Active-high. See also
ResetAssertedLevel.

Clock Input Port Specifies the name for the clock input port in
generated HDL code. Default: clk. See also
ClockInputPort.

Clock Enable Port Specifies the name for the clock enable
input port in generated HDL code. Default:
clk_enable. See also ClockEnableInputPort.

Reset Input Port Specifies the name for the reset input port in
generated HDL code. Default: reset. See also
ResetInputPort.

Additional Settings : General Pane
This pane contains settings related to file naming for generated code, and
comment generation.

3-12

Summary of Controls and Properties

Option Description

Comment in header Text entered in this field generates a comment
line in the header of generated model and test
bench files. See also UserComment.

Verilog file extension This field specifies the file name extension for
generated Verilog files. The default extensions
is .v. Verilog file extension is enabled
when the target language is Verilog. See also
VerilogFileExtension.

VHDL file extension This field specifies the file name extension for
generated VHDL files. The default extensions
is .vhd. VHDL file extension is enabled
when the target language is VHDL. See also
VHDLFileExtension.

Entity conflict postfix The string entered in this field is used to
resolve duplicate VHDL entity or Verilog
module names in generated code. The default
is _entity. See also EntityConflictPostfix.

3-13

3 Code Generation Options in the Simulink HDL Coder GUI

Option Description

Package postfix The string entered in this field is appended to
the model or subsystem name to form the name
of a VHDL package file.Package postfix is
enabled when the target language is VHDL.
The default is _pkg. See also PackagePostfix.

Reserved word postfix The string entered in this field is appended
to value names, postfix values, or labels in
generated code that conflict with VHDL or
Verilog reserved words. The default is _rsvd.
See also ReservedWordPostfix.

Split entity and architecture Split entity and architecture is enabled
when the target language is VHDL. When this
option is deselected (the default), VHDL entity
and architecture code is written to a single
VHDL file. When this option is selected VHDL
entity and architecture definitions are written
to separate files. See also SplitEntityArch.

Split entity file postfix Split entity file postfix is enabled when
Split entity and architecture is selected.
The string entered in this field is appended
to the model name to form the name of a
generated VHDL entity file. The default is
_entity. See also SplitEntityFilePostfix.

3-14

Summary of Controls and Properties

Option Description

Split arch file postfix Split arch file postfix is enabled when
Split entity and architecture is selected.
The string entered in this field is appended
to the model or subsystem name to form the
name of the file containing the model’s VHDL
architecture. The default is _arch. See also
SplitArchFilePostfix.

Clocked process postfix Specifies a string to append to HDL clock
process names. Simulink HDL Coder uses
process blocks for register operations. The
label for each block drives from a register name
and the postfix. The default is _process. See
also ClockProcessPostfix.

Additional Settings : Ports Pane
This pane contains options related to input, output, and clock enable output
ports.

3-15

3 Code Generation Options in the Simulink HDL Coder GUI

Option Description

Input data type Specifies the HDL data type for the model’s
input ports. For VHDL, the options are

• std_logic_vector: Specifies VHDL type
STD_LOGIC_VECTOR.

• signed/unsigned: Specifies VHDL type
SIGNED or UNSIGNED.

Input data type is disabled when the target
language is Verilog. In generated Verilog code,
the data type for all ports is wire.

See also InputType.

Output data type Specifies the HDL data type for the model’s
output ports. For VHDL, the options are

• std_logic_vector: Specifies VHDL type
STD_LOGIC_VECTOR.

• signed/unsigned: Specifies VHDL type
SIGNED or UNSIGNED.

Output data type is disabled when the target
language is Verilog. In generated Verilog code,
the data type for all ports is wire.

See also OutputType.

Clock enable output port Specifies the name for the generated clock
enable output. The default is ce_out.See also
ClockEnableOutputPort.

Additional Settings : Advanced Pane
This pane contains advanced settings related to detailed characteristics of
generated code. Most of these options are specific to either VHDL or Verilog.

3-16

Summary of Controls and Properties

Option Description

Represent constant values by aggregates Represent constant values by aggregates
is enabled when the target language is VHDL.
When this option is deselected (the default),
the coder represents constants less than 32 bits
as scalars and constants greater than or equal
to 32 bits as aggregates. When this option
is selected, all constants are represented as
aggregates. See also UseAggregatesForConst.

Use "rising edge" for registers Use "rising edge" for registers is enabled
when the target language is VHDL. When
this option is deselected (the default),
generated code checks for clock events when
operating on registers. When this option
is selected, generated code uses the VHDL
rising_edge function to check for rising
edges when operating on registers. See also
UseRisingEdge.

3-17

3 Code Generation Options in the Simulink HDL Coder GUI

Option Description

Loop unrolling Loop unrolling is enabled when the target
language is VHDL. When this option is
deselected (the default), FOR and GENERATE
loops are included in generated VHDL code.
When this option is deselected, are unrolled
and omitted from generated VHDL code. See
also LoopUnrolling.

Cast before sum When this option is selected (the default),
operands in addition and subtraction
operations are type cast to the result type
before executing the operation. When this
option is selected, operand types are preserved
during addition and subtraction operations
and the result is then converted to the desired
result type. See also CastBeforeSum.

Use Verilog "timescale directives" Use Verilog "timescale directives"
is enabled when the target language is
Verilog. When this option is selected
(the default), the coder uses compiler
'timescale directives in generated Verilog
code. When this option is deselected, the
coder suppresses compiler 'timescale
directives in generated Verilog code.
This setting does not affect
the generated test bench.
See also UseVerilogTimescale.

3-18

Summary of Controls and Properties

Option Description

Inline VHDL configuration Inline VHDL configuration is enabled when
the target language is VHDL. When this option
is selected (the default), VHDL configurations
are generated in any file that instantiates a
component. When this option is deselected,
generated configurations are suppressed and
user-defined configurations are required.See
also InlineConfigurations.

Concatenate type safe zeros When this option is selected, (the default), the
code uses the type-safe syntax, '0' & '0', for
concatenated zeros. Typically, this syntax is
preferred. See also SafeZeroConcat.

EDA Tool Scripts Pane
The EDA Tool Scripts pane (shown in the following figure) lets you set
options that control generation of script files for third-party electronic design
automation (EDA) tools.

See Chapter 10, “Generating Scripts for HDL Simulators and Synthesis Tools”
for a detailed description of tool script generation.

3-19

3 Code Generation Options in the Simulink HDL Coder GUI

The Generate EDA scripts option controls the generation of script files.
This option is selected by default. If you want to disable script generation,
deselect this option.

The list on the left of the EDA Tool Scripts pane lets you select from several
categories of options. Select a category and set the options as desired. The
categories are

• Compilation script. Options related to customizing scripts for compilation
of generated VHDL or Verilog code. See “EDA Tool Scripts:Compilation
Script Pane” on page 3-21 for further information.

• Simulation script. Options related to customizing scripts for HDL
simulators. See “EDA Tool Scripts:Simulation Script Pane” on page 3-22 for
further information.

• Synthesis script. Options related to customizing scripts for synthesis
tools. See “EDA Tool Scripts:Synthesis Script Pane” on page 3-24 for
further information.

3-20

Summary of Controls and Properties

EDA Tool Scripts:Compilation Script Pane
The following figure shows the Compilation script pane, with all options
set to their default values.

The following table summarizes the Compilation script options.

Option and Default Description

Compile file postfix’

'_compile.do'

Postfix string appended to the filter name or
test bench name to form the script file name.
See also HDLCompileFilePostfix.

Name: Compile initialization

Default:'vlib work\n'

Format string passed to fprintf to write
the Init section of the compilation script.
See alsoHDLCompileInit.

3-21

3 Code Generation Options in the Simulink HDL Coder GUI

Option and Default Description

Name: Compile command for VHDL

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of
the Simulator flags option and the filename
of the current entity or module. To omit the
flags, set Simulator flags to '' (the default).
See also HDLCompileVHDLCmd.

Name: Compile command for
Verilog

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of
the Simulator flags option and the filename
of the current entity or module. To omit the
flags, set Simulator flags to '' (the default).
See also HDLCompileVerilogCmd.

Name:Compile termination

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.
See also HDLCompileTerm.

EDA Tool Scripts:Simulation Script Pane
The following figure shows the Simulation script pane, with all options
set to their default values.

3-22

Summary of Controls and Properties

The following table summarizes the Simulation script options.

Option and Default Description

Simulation file postfix

'_sim.do'

Postfix string appended to the filter name or test
bench name to form the script file name. See also
HDLSimFilePostfix.

Simulation initialization

Default:

['onbreak resume\nonerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.
See also HDLSimInit.

Simulation command

Default: 'vsim work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument
is the top-level module or entity name.
See also HDLSimCmd.

3-23

3 Code Generation Options in the Simulink HDL Coder GUI

Option and Default Description

Simulation waveform viewing
command

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the simulation
script waveform viewing command. The top-level
module or entity signal names are implicit arguments.
See also HDLSimViewWaveCmd.

Simulation termination

Default: 'run -all\n'

Format string passed to fprintf to write
the Term portion of the simulation script
See also HDLSimTerm.

EDA Tool Scripts:Synthesis Script Pane
The following figure shows the Synthesis script pane, with all options set to
their default values.

The following table summarizes the Synthesis script options.

3-24

Summary of Controls and Properties

Option Name and Default Description

Name: Synthesis initialization

Default: 'project -new %s.prj\n'

Format string passed to fprintf to write the Init
section of the synthesis script. The default string is
a synthesis project creation command. The implicit
argument is the top-level module or entity name.
See also HDLSynthInit.

Name: Synthesis command

Default: 'add_file %s\n'

Format string passed to fprintf to write
the Cmd section of the synthesis script. The
argument is the filename of the entity or module.
See also HDLSimCmd.

Name: Synthesis termination

Default:

['set_option -technology VIRTEX2\n',...

'set_option -part XC2V500\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

Format string passed to fprintf to write
the Term section of the synthesis script.
See also HDLSynthCmd.

Test Bench Pane
The Test Bench pane lets you set options that determine characteristics of
generated test bench code.

3-25

3 Code Generation Options in the Simulink HDL Coder GUI

Option or Control Description

Generate Test Bench Initiates test bench code generation for the
subsystem selected in the Generate HDL for
menu. If you do not select a subsystem from
the top (root) level of the current Simulink
model in the Generate HDL for menu, the
Generate Test Bench button is disabled.

See also makehdltb.

Test bench name postfix Specifies a suffix appended to the test
bench name. The default is _tb. See also
TestBenchPostFix.

Force clock When this option is selected (the default), the
test bench forces the clock input signals. See
also ForceClock.

3-26

Summary of Controls and Properties

Option or Control Description

Clock high time This option is enabled when Force clock is
selected. Specify the period, in nanoseconds,
during which a test bench drives clock input
signals high. The default is 5 ns. See also
ClockHighTime.

Clock low time This option is enabled when Force clock is
selected. Specify the period, in nanoseconds,
during which a test bench drives clock input
signals low. The default is 5 ns. See also
ClockLowTime.

Force clock enable When this option is selected (the default), the
test bench forces the clock enable input signals
to active high (1) or active low (0), depending
on the setting of the clock enable input value.
See also ForceClockEnable.

Force reset When this option is selected (the default), the
test bench forces the reset input signals. See
also ForceReset.

Hold time (ns) This option specifies a hold time, in
nanoseconds, for input signals and forced reset
input signals. The default is 2 ns. During the
hold interval, the model’s data input signals
and forced reset input signals are held past the
clock rising edge. See also HoldTime.

3-27

3 Code Generation Options in the Simulink HDL Coder GUI

3-28

4

Code Generation Control
Files

Overview of Control Files (p. 4-2) Motivation for code generation
control files; control file
statement types; selectable
HDL block implementations and
implementation mappings

Structure of a Control File (p. 4-5) Required elements of a control file

Code Generation Control Objects
and Methods (p. 4-7)

Instantiating a code generation
control object; code generation
control object methods that you can
invoke in a control file

Using Control Files in the Code
Generation Process (p. 4-13)

How to create a control file, attach
or detach it from your model, and
invoke it during code generation

Specifying Block Implementations
and Parameters in the Control File
(p. 4-17)

How block implementations and
implementation parameters are
specified in a control file; how to
use the hdlnewforeach function to
generate selection/action statements;
summary of blocks with multiple
implementations

Summary of Block Implementations
(p. 4-27)

Summary of implementations for all
supported blocks

4 Code Generation Control Files

Overview of Control Files
• “Selectable Block Implementations” on page 4-3

• “Implementation Mappings” on page 4-3

• “Control File Demo” on page 4-3

Code generation control files (referred to in this document as control files) let
you extend the HDL code generation process and direct its details. A control
file is an M-file that you attach to your model, using either the makehdl
command or the Simulink Configuration Parameters dialog box. You do not
need to know any internal details of the code generation process to use a
control file.

In the current release, control files support the following statement types:

• Selection/action statements provide a general framework for the
application of different types of transformations to selected model
components. Selection/action statements select a group of blocks within
your model, and specify an action to be executed when code is generated
for each block in the selected group.

Selection criteria include block type and location within the model. For
example, you might select all built-in Gain blocks at or below the level of a
certain subsystem within your model.

A typical action applied to such a group of blocks would be to direct the
code generator to execute a specific block implementation method when
generating HDL code for the selected blocks. For example, for Gain blocks,
you might choose a method that generates code that is optimized for speed
or chip area.

• Property setting statements let you

- Select the model or subsystem from which code is to be generated.

- Set the values of code generation properties to be passed to the code
generator. The properties and syntax are the same as those used for the
makehdl command.

- Set up default or template HDL code generation settings for your
organization.

4-2

Overview of Control Files

Selectable Block Implementations
Selection/action statements provide a general framework that lets you define
how Simulink HDL Coder acts upon selected model components. The current
release supports one such action: execution of block implementation methods.

Block implementation methods are code generator components that emit
HDL code for the blocks in a Simulink model. This document refers to block
implementation methods as block implementations or simply implementations.

Simulink HDL Coder provides at least one block implementation for every
supported block. This is called the default implementation. In addition,
Simulink HDL Coder provides selectable alternate block implementations
for certain block types. Each implementation is optimized for different
characteristics, such as speed or chip area. For example, you can choose
Gain block implementations that use canonic signed digit (CSD) techniques
(reducing area), or use a default implementation that retains multipliers.

Implementation Mappings
Control files let you specify one or more implementation mappings that control
how HDL code is to be generated for a specified group of blocks within the
model. An implementation mapping is an association between a selected block
or set of blocks within the model and a block implementation.

To select the set of blocks to be mapped to a block implementation, you specify

• A modelscope: a Simulink block path (which could incorporate an entire
model or sublevel of the model, or a specific subsystem or block)

• A blocktype: a Simulink block type that corresponds to the selected block
implementation

During code generation, each defined modelscope is searched for instances of
the associated blocktype. For each such block instance encountered, the code
generator uses the selected block implementation.

Control File Demo
The “Getting Started with Control Files” demo illustrates the use of simple
control files to define implementation mappings and generate Verilog

4-3

4 Code Generation Control Files

code. The demo is located in the Demos pane on the left of the MATLAB
Help browser. To run the demo, select Simulink > Simulink HDL
Coder > Getting Started with Control Files in the Demos pane. Then
follow the demo instructions.

4-4

Structure of a Control File

Structure of a Control File
The required elements for a code generation control file are as follows:

• A control file is an M-file that implements a single function, which is
invoked during the code generation process.

The function must instantiate a code generation control object, set its
properties, and return the object to the code generator.

Setting up a code generation control object requires the use of a small
number of methods, as described in “Code Generation Control Objects and
Methods” on page 4-7. You do not need to know internal details of the code
generation control object or the class to which it belongs.

The object is constructed using the hdlnewcontrol function. The argument
to hdlnewcontrol is the name of the control file itself. Use the MATLAB
mfilename function to pass in the file name, as shown in the following
example.

function c = dct8config
c = hdlnewcontrol(mfilename);

% Set target language for Verilog.
c.set('TargetLanguage','Verilog');

% Set top-level subsystem from which code is generated.
c.generateHDLFor('dct8_fixed/OneD_DCT8');

• Following the constructor call, your code will invoke methods of the
code generation control object. The previous example calls the set and
generateHDLFor methods. These and all other public methods of the object
are discussed in “Code Generation Control Objects and Methods” on page
4-7.

• Your control file must be attached to your Simulink model before code
generation, as described in “Using Control Files in the Code Generation
Process” on page 4-13. The interface between the code generator and your
attached control file is automatic.

• A control file is normally located in either the current working directory, or
a directory that is in the MATLAB path.

4-5

4 Code Generation Control Files

If you want to locate a control file elsewhere, you should specify an explicit
path to the control file when you attach it to your model.

However, your control files should not be located within the MATLAB
directory tree because they could be overwritten by subsequent MATLAB
installations.

4-6

Code Generation Control Objects and Methods

Code Generation Control Objects and Methods
Code generation control objects are instances of the class
slhdlcoder.ConfigurationContainer. This section describes the methods
of that class that you can use in your control files. Other methods of this
class are for MathWorks internal use only. The methods are described in
the following sections:

• “hdlnewcontrol” on page 4-7

• “forEach” on page 4-7

• “forAll” on page 4-11

• “set” on page 4-11

• “generateHDLFor” on page 4-11

hdlnewcontrol
The hdlnewcontrol function constructs a code generation control object. The
syntax is

object = hdlnewcontrol(mfilename);

The argument to hdlnewcontrol is the name of the control file itself. Use the
MATLAB mfilename function to pass in the file name string.

forEach
This method establishes an implementation mapping between an HDL block
implementation and a selected block or set of blocks within the model. The
syntax is

object.forEach({'modelscopes'}, ...
'blocktype', {'block_parms'}, ...
'implementation', {'implementation_parms'})

The forEach method selects a set of Simulink blocks (modelscopes) that is
searched, during code generation, for instances of a specified type of block
(blocktype). Code generation for each block instance encountered uses the
HDL block implementation specified by the implementation parameter.

4-7

4 Code Generation Control Files

Note You can use the hdlnewforeach function to generate forEach method
calls for insertion into your control files. See “Generating Selection/Action
Statements with the hdlnewforeach Function” on page 4-17 for more
information.

The following table summarizes the arguments to the forEach method.

Argument Type Description

modelscopes String or cell
array of strings

Strings defining one or more Simulink paths:

{'path1' 'path2'...'pathN'}

Each such path defines a modelscope: a set
of Simulink blocks that participate in an
implementation mapping. The selected set
of blocks in a modelscope could include the
entire model, all blocks at a specified level of
the model, or a specific block or subsystem. A
path terminating in a wildcard character ('*')
indicates inclusion of all blocks at or below the
model level specified by the path. Supported
syntax for modelscope paths is

• 'model/*': all blocks in the model

• 'model/subsyslevel/block': a specific
block within a specific level of the model

• 'model/subsyslevel/subsystem': a specific
subsystem block within a specific level of the
model

• 'model/subsyslevel/*': any block within a
specific level of the model

See also “Resolution of modelscopes” on page
4-10.

4-8

Code Generation Control Objects and Methods

Argument Type Description

blocktype String Simulink block specification that identifies the
type of block that is to be mapped to the HDL
block implementation. The syntax for a block
specification is the same as that used in the
Simulink add-block command. For built-in
Simulink blocks, the blocktype is of the form

'built-in/blockname'

For other blocks, blocktype must include the
library containing the block, for example:

'dsparch4/Digital Filter'

If the block is contained in a sublibrary, the full
path from the top-level library must be included.

block_parms Cell array of
strings

Reserved for future use; not supported in the
current release. Pass in an empty cell array ({})
as placeholder.

implementation String An HDL block implementation to be used in
code generation for all blocks that meet the
modelscope and blocktype search criteria.
An implementation is specified in the form
package.class, for example:

hdldefaults.GainMultHDLEmission

“Specifying Block Implementations and
Parameters in the Control File” on page 4-17
lists available implementations.

implementation_parms Cell array of
strings

Reserved for future use; not supported in the
current release. Pass in an empty cell array ({})
as placeholder.

4-9

4 Code Generation Control Files

Resolution of modelscopes
A possible conflict exists in the forEach specifications in the following
example:

% 1. Use default (multipliers) Gain block implementation

% for one specific Gain block within OneD_DCT8 subsystem

c.forEach('dct8_fixed/OneD_DCT8/Gain14',...

'built-in/Gain', {},...

'hdldefaults.GainMultHDLEmission');

% 2. Use factored CSD Gain block implementation

% for all Gain blocks at or below level of OneD_DCT8 subsystem.

c.forEach('dct8_fixed/OneD_DCT8/*',...

'built-in/Gain', {},...

'hdldefaults.GainFCSDHDLEmission');

The first forEach call defines an implementation mapping for a specific block
within the subsystem OneD_DCT8. The second forEach call defines a different
implementation mapping for all blocks within or below the subsystem
OneD_DCT8.

Simulink HDL Coder resolves such ambiguities by always giving higher
priority to the more specific modelscope. In the example, the Gain14
block uses the hdldefaults.GainMultHDLEmission implementation,
while all other blocks within or below the subsystem OneD_DCT8 use the
hdldefaults.GainFCSDHDLEmission implementation.

Five levels of modelscope priority from most specific (1) to least specific (5)
are defined:

1 A/B/C/block

2 A/B/C/*

3 A/B/*

4 *

5 Unspecified. Use MathWorks default implementation.

4-10

Code Generation Control Objects and Methods

forAll
This method is a shorthand form of forEach. Only one modelscope path is
specified. The modelscope argument is specified as a string (not a cell array)
and it is implicitly terminated with'/*'. The syntax is

object.forAll('modelscope', ...
'blocktype', {'block_parms'}, ...
'implementation', {'implementation_parms'})

All other arguments are the same as those described for “forEach” on page 4-7.

set
The set method sets one or more code generation properties. The syntax is

object.set('PropertyName', PropertyValue,...)

The argument list specifies one or more code generation options as
property/value pairs. You can set any of the code generation properties
documented in Chapter 12, “Properties — Alphabetical List”, except the
HDLControlFiles property.

Note If you specify the same property in both your control file and your
makehdl command, the property will be set to the value specified in the
control file.

Likewise, when generating code via the GUI, if you specify the same property
in both your control file and the HDL Coder options panes, the property will
be set to the value specified in the control file.

generateHDLFor
This method selects the model or subsystem from which code is to be
generated. The syntax is

object.generateHDLFor('simulinkpath')

4-11

4 Code Generation Control Files

The argument is a string specifying the full Simulink path to the model or
subsystem from which code is to be generated.

Use of this method is optional. You can specify the same parameter in the
Generate HDL for menu in the HDL Coder pane of the Configuration
Parameters dialog box, or in a makehdl command.

4-12

Using Control Files in the Code Generation Process

Using Control Files in the Code Generation Process
• “Creating a Control File” on page 4-13

• “Associating an Existing Control File with Your Model” on page 4-14

• “Detaching a Control File from Your Model” on page 4-16

Creating a Control File
You can create a control file manually using the MATLAB editor or some
other text editor. See “Structure of a Control File” on page 4-5 to make sure
your files are set up correctly.

You can also use the GUI to save your current Simulink HDL Coder settings
to a control file, as follows:

1 Open the Configuration Parameters dialog box and select the HDL Coder
options pane.

2 In the Code generation control file subpane, click the Save button.

3 A standard file dialog box opens. Navigate to the directory where you want
to save the control file. Then enter the file name and save the file.

4 The file name of the control file is now displayed in the File name field, as
shown in the following figure.

4-13

4 Code Generation Control Files

5 The control file is now linked to your model and will be used when code is
generated. Save the model if you want the control file linkage to persist in
future MATLAB sessions with your model.

6 You can now edit the control file, for example, adding ForEach statements
to define block implementation bindings, etc.

Associating an Existing Control File with Your Model
A control file must be associated with your model before you can use the
control file in code generation.

If you are generating code via makehdl or makehdltb from the MATLAB
command prompt, use the HDLControlFiles property to specify the location
of the control file. In the following example, the control file is assumed to be
located on the MATLAB path or in the current working directory, and to have
the default file name extension .m.

makehdl('HDLControlFiles', {'dct8config'});

If you are using the GUI to generate code, specify the location of the control
file as follows:

4-14

Using Control Files in the Code Generation Process

1 Open the Configuration Parameters dialog box and select the HDL Coder
options pane.

2 In the Code generation control file subpane, click the Load button.

3 A standard file dialog box opens. Navigate to the desired control file, and
select it.

4 The file name of the selected control file is displayed in the File name
field, as shown in the following figure.

5 Click Apply.

6 The control file is now linked to your model and will be used when code is
generated. Save the model if you want the control file linkage to persist in
future MATLAB sessions with your model.

4-15

4 Code Generation Control Files

Detaching a Control File from Your Model
The quickest (and recommended) way to detach a control file from your model
is to click the Restore Factory Defaults button. This button removes the
control file linkage, clears the File name field, and resets all Simulink HDL
Coder properties to their default settings.

Note Restore Factory Defaults resets all HDL code generation settings.
This action cannot be cancelled or undone. To recover previous settings, you
must close the model without saving it, and then reopen it.

Any of the following actions also detach a control file from a model:

• Attaching another control file, using either the Load button or a call to
makehdl

• Closing the model after attaching a control file, without saving the model

• Clearing the HDLControlFiles property by passing in a null file name
argument to makehdl, as in this example:

makehdl(gcb,'HDLControlFiles',{''});

4-16

Specifying Block Implementations and Parameters in the Control File

Specifying Block Implementations and Parameters in the
Control File

• “Generating Selection/Action Statements with the hdlnewforeach Function”
on page 4-17

• “Blocks with Multiple Implementations” on page 4-21

Simulink HDL Coder provides a default HDL block implementation for all
supported blocks. In addition, Simulink HDL Coder provides selectable
alternate HDL block implementations for several block types. Using
selection/action statements (forEach or forAll method calls) in a control
file, you can specify the block implementation to be applied to all blocks of a
given type (within a specific modelscope) during code generation. (See “Code
Generation Control Objects and Methods” on page 4-7.)

You select HDL block implementations by specifying an implementation
package and class, in the form package.class. Pass in the package.class
specification to the implementation parameter of a forEach or forAll call,
as in the following example.

config.forEach('simplevectorsum/vsum/Sum',...
'built-in/Sum',{},...
'hdldefaults.SumTreeHDLEmission',{});

Given the package.class specification, Simulink HDL Coder will call the
appropriate code generation method. You do not need to know any internal
details of the implementation classes.

Generating Selection/Action Statements with the
hdlnewforeach Function
Determining the block path, type, and implementation package.class
specification for a large number of blocks in a model can be time-consuming.
To help you create selection/action statements in your control files, Simulink
HDL Coder provides the hdlnewforeach function. Given a selection of one or
more blocks from your model, hdlnewforeach returns the following for each
selected block, as string data in the MATLAB workspace:

4-17

4 Code Generation Control Files

• A forEach call coded with the correct modelscope , blocktype, and default
implementation arguments for the block

• (Optional) A cell array of strings enumerating the available
implementations for the block, in package.class form

Having generated this information, you can copy and paste the strings into
your control file.

hdlnewforeach Example
This example uses hdlnewforeach to construct a forEach call that specifies
a nondefault implementation for a Sum block within the sfir_fixed demo
model. To do this:

1 In the MATLAB window, select File > New > M-File. The MATLAB editor
opens an empty M-file.

2 Create a skeletal control file by entering the following code into the M-file
window.

function c = newforeachexamp
c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.
c.generateHDLFor('sfir_fixed/symmetric_fir');
% INSERT FOREACH CALL BELOW THIS LINE.

3 Save the file as newforeachexamp.m.

4 Open the sfir_fixed demo model.

5 Before invoking hdlnewforeach, you must run checkhdl or makehdl to
build in-memory information about the model. At the MATLAB command
prompt, run checkhdl on the symmetric_fir subsystem, as shown in the
following code example.

checkhdl('sfir_fixed/symmetric_fir')
Starting HDL Check.
HDL Check Complete with 0 errors, warnings and messages.

4-18

Specifying Block Implementations and Parameters in the Control File

6 Close the checkdl report window, and activate the sfir_fixed model
window.

7 Right-click thesymmetric_fir subsystem and select Look Under Mask
from the context menu.

8 In the symmetric_fir subsystem window, select the Add4 block, as shown
in the following figure.

Now you are ready to generate a forEach call for the selected block. Do this
as follows:

1 Type the following command at the MATLAB prompt.

[cmd,impl] = hdlnewforeach(gcb)

4-19

4 Code Generation Control Files

2 The command returns the following results.

cmd =

c.forEach('sfir_fixed/symmetric_fir/Add4',...
'built-in/Sum', {},...
'hdldefaults.SumLinearHDLEmission', {});

impl =

{3x1 cell}

The first return value, cmd, contains the generated forEach call. The
forEach call specifies the default implementation for the Sum block:
hdldefaults.SumLinearHDLEmission.

3 The second return value, impl, is a cell array containing three strings
representing the available implementations for the Sum block. The
following example lists the contents of the impl array.

impl{1}

ans =

'hdldefaults.SumTreeHDLEmission'
'hdldefaults.SumLinearHDLEmission'
'hdldefaults.SumCascadeHDLEmission'

See the table “Built-In/Sum of Elements on page 4-24” for information
about these implementations.

4 Copy the three lines of forEach code from the MATLAB Command window
and paste them into the end of your newforeachexamp.m file, as shown in
the following example.

% INSERT FOREACH CALL BELOW THIS LINE.
c.forEach('sfir_fixed/symmetric_fir/Add4',...
'built-in/Sum', {},...
'hdldefaults.SumCascadeHDLEmission', {});

4-20

Specifying Block Implementations and Parameters in the Control File

5 Copy the nondefault implementation string,
'hdldefaults.SumCascadeHDLEmission' (including quotes)
from the MATLAB Command window and paste it into your
control file, replacing the default implementation string,
'hdldefaults.SumTreeHDLEmission'.

6 Save the file.

7 The following code listing shows the complete control file.

function c = newforeachexamp
c = hdlnewcontrol(mfilename);

% Set target language for Verilog.
c.set('TargetLanguage','Verilog');

% Set top-level subsystem from which code is generated.
c.generateHDLFor('sfir_fixed/symmetric_fir');
% INSERT FOREACH CALLS HERE.
c.forEach('sfir_fixed/symmetric_fir/Add4',...
'built-in/Sum', {},...
'hdldefaults.SumCascadeHDLEmission', {});

Note For convenience, hdlnewforeach supports a more abbreviated syntax
than that used in the previous example. See the hdlnewforeach reference
page.

Blocks with Multiple Implementations
The tables in this section summarize the block types that have multiple
implementations. The “Implementations” column gives the package.class
specification you should use in your control files. The “Description” column
summarizes the trade-offs involved in choosing different implementations.

Simulink HDL Coder provides a default HDL block implementation for all
supported blocks. If you want to use the default implementation, you do not
usually need to specify it explicitly in a control file. However, the following
example illustrates a situation in which the default implementation is
specified as an exception for one particular block.

4-21

4 Code Generation Control Files

% 1. Use default (multipliers) Gain block implementation
% for one specific Gain block within OneD_DCT8 subsystem.
c.forEach('dct8_fixed/OneD_DCT8/Gain14',...

'built-in/Gain', {},...
'hdldefaults.GainMultHDLEmission');

% 2. Use factored CSD Gain block implementation
% or all other Gain blocks at or below
% level of OneD_DCT8 subsystem.
c.forEach('dct8_fixed/OneD_DCT8/*',...

'built-in/Gain', {},...
'hdldefaults.GainFCSDHDLEmission');

Built-In/Gain

Implementations Description

hdldefaults.GainMultHDLEmission Default. This implementation retains multiplier
operations in HDL code generated by the Gain
block.

hdldefaults.GainCSDHDLEmission This implementation decreases the area used
by the model while maintaining or increasing
clock speed, using canonic signed digit (CSD)
techniques. CSD replaces multiplier operations
with shift and add operations. CSD minimizes
the number of addition operations required for
constant multiplication by representing binary
numbers with a minimum count of nonzero digits.

hdldefaults.GainFCSDHDLEmission This implementation lets you achieve a greater
area reduction than CSD, at the cost of decreasing
clock speed. This implementation uses factored
CSD techniques, which replace multiplier
operations with shift and add operations on prime
factors of the operands.

4-22

Specifying Block Implementations and Parameters in the Control File

Built-In/Lookup Table

Implementations Description

hdldefaults.LookupHDLEmission Default. Nonhierarchical lookup table.

hdldefaults.LookupHDLInstantiation This implementation generates an additional
level of HDL hierarchy (which does not exist in
the Simulink model) for the lookup table.

Signal Processing Blockset/Minimum

Implementation Description

hdldefaults.MinMaxTreeHDLEmission Default. This implementation is large and slow
but has minimal latency.

hdldefaults.MinMaxCascadeHDLEmission This implementation is optimized for latency *
area, with medium speed. See “A Note on Cascade
Implementations” on page 4-26.

Signal Processing Blockset/Maximum

Implementation Description

hdldefaults.MinMaxTreeHDLEmission Default. This implementation is large and slow
but has minimal latency.

hdldefaults.MinMaxCascadeHDLEmission This implementation is optimized for latency *
area, with medium speed. See “A Note on Cascade
Implementations” on page 4-26.

Built-In/MinMax

Implementation Description

hdldefaults.MinMaxTreeHDLEmission Default. This implementation is large and slow
but has minimal latency.

hdldefaults.MinMaxCascadeHDLEmission This implementation is optimized for latency *
area, with medium speed. See “A Note on Cascade
Implementations” on page 4-26.

4-23

4 Code Generation Control Files

Built-In/Product of Elements

Implementation Description

hdldefaults.ProductLinearHDLEmission Default. Generates a chain of N operations
(multipliers) for N inputs.

hdldefaults.ProductTreeHDLEmission This implementation has minimal latency but
is large and slow. It generates a tree-shaped
structure of multipliers.

hdldefaults.ProductCascadeHDLEmission This implementation optimizes latency * area
and is faster than the tree implementation.
It computes partial products and cascades
multipliers. See “A Note on Cascade
Implementations” on page 4-26.

Built-In/Sum of Elements

Implementation Description

hdldefaults.SumLinearHDLEmission Default. Generates a chain of N operations
(adders) for N inputs.

hdldefaults.SumTreeHDLEmission This implementation has minimal latency but is
large and slow. Generates a tree-shaped structure
of adders.

hdldefaults.SumCascadeHDLEmission This implementation optimizes latency * area
and is faster than the tree implementation. It
computes partial sums and cascades adders. See
“A Note on Cascade Implementations” on page
4-26.

4-24

Specifying Block Implementations and Parameters in the Control File

Built-In/SubSystem

Implementation Description

hdldefaults.SubsystemBlackBoxHDLInstantiation This implementation generates a
black box interface for subsystems.
That is, the generated HDL code
includes only the input/output port
definitions for the subsystem. In
this way, you can use a subsystem in
your model to generate an interface
to existing hand-written HDL code.

The black box interface generated
for subsystems is similar to the
interface generated for Model blocks,
but without generation of clock
signals.

hdldefaults.NoHDLEmission This implementation completely
removes the subsystem from the
generated code. This lets you use a
subsystem in simulation but treat it
as a “no-op” in the HDL code.

For more information on subsystem implementations, see Chapter 7,
“Interfacing Subsystems and Models to HDL Code”.

4-25

4 Code Generation Control Files

Special-Purpose Implementations

Implementation Description

hdldefaults.PassThroughHDLEmission Provides a pass-through implementation in
which the block’s inputs are passed directly to its
outputs. (In effect, the block becomes a wire in the
HDL code.) Several blocks are supported with a
pass-through implementation.

hdldefaults.NoHDLEmission This implementation completely removes the
block from the generated code. This lets you use
the block in simulation but treat it as a “no-op”
in the HDL code. This implementation is used
for many blocks (such as Scopes and Assertions)
that are significant in simulation but would be
meaningless in HDL code. You can also use this
implementation as an alternative implementation
for subsystems.

For more information related to special-purpose implementations, see Chapter
7, “Interfacing Subsystems and Models to HDL Code”.

A Note on Cascade Implementations
Cascade implementations are available for the Sum of Elements, Product
of Elements, and MinMax blocks. These implementations require multiple
clock cycles to process their inputs; therefore, their inputs must be kept
unchanged for their entire sample-time period. Simulink HDL Coder test
benches accomplish this by using a register to drive the inputs.

A recommended design practice, when integrating HDL code generated by
Simulink HDL Coder with other HDL code, is to provide registers at the
inputs. While not strictly required, adding registers to the inputs improves
timing and avoids problems with data stability for blocks that require
multiple clock cycles to process their inputs.

4-26

Summary of Block Implementations

Summary of Block Implementations
The following table summarizes all blocks that are supported for HDL code
generation and their available implementations in the current release. The
columns signify

• Simulink Block: Library path and block name as displayed in Simulink.

• Blockscope: Block path and name to be passed as a blockscope string
argument to forEach or forAll.

• Implementations: Names of available implementations. When specifying
an implementation argument to forEach or forAll, use the format
package.class, for example, hdldefaults.AssignmentHDLEmission or
hdlstateflow.StateflowHDLInstantiation.

Almost all implementation classes currently belong to the package
hdldefaults. In the following table, the package name is given explicitly
only for classes that belong to some other package.

Simulink Block Blockscope Implementations

simulink/Model
Verification/Assertion

built-in/Assertion NoHDLEmission

simulink/Math
Operations/Assignment

built-in/Assignment AssignmentHDLEmission

simulink/Math
Operations/Abs

built-in/Abs AbsHDLEmission

simulink/Math
Operations/Matrix
Concatenate

built-in/Concatenate MuxHDLEmission

simulink/Math
Operations/Vector
Concatenate

built-in/Concatenate MuxHDLEmission

simulink/Commonly Used
Blocks/Constant

built-in/Constant ConstantHDLEmission

4-27

4 Code Generation Control Files

Simulink Block Blockscope Implementations

simulink/Commonly
Used Blocks/Data Type
Conversion

built-in/

DataTypeConversion

DataTypeConversionHDLEmission

simulink/Commonly Used
Blocks/Demux

built-in/Demux DemuxHDLEmission

simulink/Sinks/Display built-in/Display NoHDLEmission

dspsigattribs/Frame
Conversion

built-in/FrameConversion FrameConversionHDLEmission

simulink/Commonly Used
Blocks/Gain

built-in/Gain GainMultHDLEmission

GainFCSDHDLEmission

GainCSDHDLEmission

simulink/Commonly Used
Blocks/Ground

built-in/Ground ConstantHDLEmission

simulink/Commonly Used
Blocks/In1

built-in/Inport NoHDLEmission

(Input ports are generated
automatically.)

simulink/Commonly Used
Blocks/Logical Operator

built-in/Logic LogicHDLEmission

simulink/Lookup
Tables/Lookup Table

built-in/Lookup LookupHDLInstantiation

LookupHDLEmission

simulink/Discrete/Memory built-in/Memory MemoryHDLEmission

simulink/Math
Operations/MinMax

built-in/MinMax MinMaxTreeHDLEmission

MinMaxCascadeHDLEmission

simulink/Ports &
Subsystems/Model

built-in/ModelReference ModelReferenceHDLInstantiation

simulink/Signal
Routing/Index Vector

built-in/MultiPortSwitch MultiPortSwitchHDLEmission

simulink/Signal
Routing/Multiport Switch

built-in/MultiPortSwitch MultiPortSwitchHDLEmission

4-28

Summary of Block Implementations

Simulink Block Blockscope Implementations

simulink/Commonly Used
Blocks/Mux

built-in/Mux MuxHDLEmission

simulink/Commonly Used
Blocks/Out1

built-in/Outport NoHDLEmission

(Output ports are generated
automatically.)

simulink/Commonly Used
Blocks/Product

built-in/Product ProductLinearHDLEmission

ProductTreeHDLEmission

ProductCascadeHDLEmission

(ProductTreeHDLEmission and
ProductCascadeHDLEmission are
supported for Product blocks having
two or more inputs.)

simulink/Math
Operations/Product of
Elements

built-in/Product ProductTreeHDLEmission

ProductLinearHDLEmission

ProductCascadeHDLEmission

simulink/Signal
Attributes/Rate Transition

built-in/RateTransition RateTransitionHDLEmission

simulink/Commonly
Used Blocks/Relational
Operator

built-in/

RelationalOperator

RelationalOperatorHDLEmission

simulink/Commonly Used
Blocks/Scope

built-in/Scope NoHDLEmission

simulink/Sinks/Floating
Scope

built-in/Scope NoHDLEmission

dspsnks4/Time Scope built-in/Scope NoHDLEmission

simulink/Signal
Routing/Selector

built-in/Selector SelectorHDLEmission

simulink/Signal
Attributes/Signal
Conversion

built-in/SignalConversion PassThroughHDLEmission

4-29

4 Code Generation Control Files

Simulink Block Blockscope Implementations

simulink/Math
Operations/Sign

built-in/Signum SignumHDLEmission

simulink/Signal
Attributes/Signal
Specification

built-in/

SignalSpecification

SignalSpecificationHDLEmission

simulink/Sinks/Stop
Simulation

built-in/Stop NoHDLEmission

simulink/Commonly Used
Blocks/Sum

built-in/Sum SumLinearHDLEmission

SumTreeHDLEmission

SumCascadeHDLEmission

(SumTreeHDLEmission and
SumCascadeHDLEmission are
supported for Sum blocks having two
or more inputs.)

simulink/Math
Operations/Add

built-in/Sum SumTreeHDLEmission

SumLinearHDLEmission

SumCascadeHDLEmission

(SumTreeHDLEmission and
SumCascadeHDLEmission are
supported for Add blocks having two or
more inputs.)

simulink/Math
Operations/Subtract

built-in/Sum SumTreeHDLEmission

SumLinearHDLEmission

SumCascadeHDLEmission

(SumTreeHDLEmission and
SumCascadeHDLEmission are
supported for Subtract blocks having
two or more inputs.)

4-30

Summary of Block Implementations

Simulink Block Blockscope Implementations

simulink/Math
Operations/Sum of
Elements

built-in/Sum SumTreeHDLEmission

SumLinearHDLEmission

SumCascadeHDLEmission

(SumTreeHDLEmission and
SumCascadeHDLEmission are
supported for Sum of Elements blocks
having two or more inputs.)

simulink/Commonly Used
Blocks/Switch

built-in/Switch SwitchHDLEmission

simulink/Commonly Used
Blocks/Terminator

built-in/Terminator NoHDLEmission

simulink/Sinks/To File built-in/ToFile NoHDLEmission

simulink/Sinks/To
Workspace

built-in/ToWorkspace NoHDLEmission

simulink/Commonly Used
Blocks/Unit Delay

built-in/UnitDelay UnitDelayHDLEmission

simulink/Discrete/

Zero-Order Hold

built-in/ZeroOrderHold ZeroOrderHoldHDLEmission

simulink/Discrete/Integer
Delay

simulink/Discrete/Integer
Delay

IntegerDelayHDLEmission

simulink/Discrete/Tapped
Delay

simulink/Discrete/Tapped
Delay

TappedDelayHDLEmission

simulink/Logic and Bit
Operations/Bit Clear

simulink/Logic and Bit
Operations/Bit Clear

BitOpsHDLEmission

simulink/Logic and Bit
Operations/Bit Set

simulink/Logic and Bit
Operations/Bit Set

BitOpsHDLEmission

simulink/Logic and
Bit Operations/Bitwise
Operator

simulink/Logic and
Bit Operations/Bitwise
Operator

BitOpsHDLEmission

4-31

4 Code Generation Control Files

Simulink Block Blockscope Implementations

simulink/Logic and Bit
Operations/Compare To
Constant

simulink/Logic and Bit
Operations/Compare To
Constant

CompareToConstHDLEmission

simulink/Logic and Bit
Operations/Compare To
Zero

simulink/Logic and Bit
Operations/Compare To
Zero

CompareToZeroHDLEmission

simulink/Logic and
Bit Operations/Shift
Arithmetic

simulink/Logic and
Bit Operations/Shift
Arithmetic

BitOpsHDLEmission

simulink/Math
Operations/Reshape

simulink/Math
Operations/Reshape

PassThroughHDLEmission

simulink/Math
Operations/Unary Minus

simulink/Math
Operations/Unary Minus

UnaryMinusHDLEmission

simulink/Model
Verification/Check
Dynamic Gap

simulink/Model
Verification/Check
Dynamic Gap

NoHDLEmission

simulink/Model
Verification/Check
Dynamic Range

simulink/Model
Verification/Check
Dynamic Range

NoHDLEmission

simulink/Model
Verification/Check Static
Gap

simulink/Model
Verification/Check Static
Gap

NoHDLEmission

simulink/Model
Verification/Check Static
Range

simulink/Model
Verification/Check Static
Range

NoHDLEmission

simulink/Model
Verification/Check
Discrete Gradient

simulink/Model
Verification/Check
Discrete Gradient

NoHDLEmission

simulink/Model
Verification/Check
Dynamic Lower Bound

simulink/Model
Verification/Check
Dynamic Lower Bound

NoHDLEmission

4-32

Summary of Block Implementations

Simulink Block Blockscope Implementations

simulink/Model
Verification/Check
Dynamic Upper Bound

simulink/Model
Verification/Check
Dynamic Upper Bound

NoHDLEmission

simulink/Model
Verification/Check Input
Resolution

simulink/Model
Verification/Check Input
Resolution

NoHDLEmission

simulink/Model
Verification/Check Static
Lower Bound

simulink/Model
Verification/Check Static
Lower Bound

NoHDLEmission

simulink/Model
Verification/Check Static
Upper Bound

simulink/Model
Verification/Check Static
Upper Bound

NoHDLEmission

simulink/Signal
Attributes/Data Type
Duplicate

simulink/Signal
Attributes/Data Type
Duplicate

NoHDLEmission

simulink/Signal
Attributes/Data Type
Propagation

simulink/Signal
Attributes/Data Type
Propagation

NoHDLEmission

simulink/Sinks/XY Graph simulink/Sinks/XY Graph NoHDLEmission

simulink/Sources/Counter
Free-Running

simulink/Sources/Counter
Free-Running

CounterFreeRunningHDLEmission

simulink/Sources/Counter
Limited

simulink/Sources/Counter
Limited

CounterLimitedHDLEmission

simulink/User-Defined
Functions/Embedded
MATLAB Function

simulink/User-Defined
Functions/Embedded
MATLAB Function

StateflowHDLInstantiation

dsparch4/Digital Filter
Note: Filter Design HDL
Coder is required to
generate code for the
Digital Filter block.

dsparch4/Digital Filter DigitalFilterHDLInstantiation

dspindex/Multiport
Selector

dspindex/Multiport
Selector

MultiportSelectorHDLEmission

4-33

4 Code Generation Control Files

Simulink Block Blockscope Implementations

dspindex/Variable Selector dspindex/Variable
Selector

VariableSelectorHDLEmission

dspsigattribs/Convert 1-D
to 2-D

dspsigattribs/Convert 1-D
to 2-D

PassThroughHDLEmission

dspsigops/Delay dspsigops/Delay DSPDelayHDLEmission

dspsnks4/Matrix Viewer dspsnks4/Matrix Viewer NoHDLEmission

dspsnks4/Signal To
Workspace

dspsnks4/Signal To
Workspace

NoHDLEmission

dspsnks4/Spectrum Scope dspsnks4/Spectrum Scope NoHDLEmission

dspsnks4/Vector Scope dspsnks4/Vector Scope NoHDLEmission

dspsnks4/Waterfall dspsnks4/Waterfall NoHDLEmission

dspsrcs4/DSP Constant dspsrcs4/DSP Constant ConstantHDLEmission

dspstat3/Maximum dspstat3/Maximum MinMaxTreeHDLEmission

MinMaxCascadeHDLEmission

dspstat3/Minimum dspstat3/Minimum MinMaxTreeHDLEmission

MinMaxCascadeHDLEmission

modelsimlib/HDL
Cosimulation

modelsimlib/HDL
Cosimulation

ModelSimHDLInstantiation

modelsimlib/To VCD File modelsimlib/To VCD File NoHDLEmission

sflib/Chart sflib/Chart hdlstateflow.StateflowHDLInstantiation

4-34

5

Generating Bit-True
Cycle-Accurate Models

Overview of Generated Models
(p. 5-2)

Motivation for generating bit-true
and cycle-accurate models; summary
of model generation features

Example: Numeric Differences
(p. 5-4)

Model generation case study
illustrating numeric differences
between original and generated
models

Example: Latency (p. 5-8) Model generation case study
illustrating latency introduced in
HDL code and generated model

Defaults and Options for Generated
Models (p. 5-12)

Defaults used in model generation;
GUI options and makehdl properties
related to generated models

5 Generating Bit-True Cycle-Accurate Models

Overview of Generated Models
In some circumstances, significant differences in behavior can arise between
a Simulink model and the HDL code generated from that model. Such
differences fall into two categories:

• Numerics: differences in intermediate and/or final computations. For
example, a selected block implementation may restructure arithmetic
operations to optimize for speed (see “Example: Numeric Differences” on
page 5-4). Where such numeric differences exist, the HDL code is no longer
bit-true to the Simulink model.

• Latency: insertion of delays of one or more clock cycles at certain points in
the HDL code. Some block implementations that optimize for area can
introduce these delays. Where such latency exists, the timing of the HDL
code is no longer cycle-accurate with respect to the Simulink model.

To help you evaluate such cases, Simulink HDL Coder creates a generated
model that is bit-true and cycle-accurate with respect to the generated HDL
code. The generated model lets you

• Run Simulink simulations that accurately reflect the behavior of the
generated HDL code.

• Create test benches based on the generated model, rather than the original
model.

• Visually detect (by color highlighting of affected subsystems) all differences
between the original and generated models.

Simulink HDL Coder always creates a generated model as part of the
code generation process, and always generates test benches based on the
generated model, rather than the original model. In cases where no latency
or numeric differences occur, you can disregard the generated model except
when generating test benches.

Simulink HDL Coder also provides options that let you

• Suppress display of the generated model.

• Create and display the only generated model, with code generation
suppressed.

5-2

Overview of Generated Models

• Specify the color highlighting of differences between the original and
generated models.

• Specify a name or prefix for the generated model.

These options are described in “Defaults and Options for Generated Models”
on page 5-12.

5-3

5 Generating Bit-True Cycle-Accurate Models

Example: Numeric Differences
This example first examines a simple model that uses a code generation
control file to select a speed-optimized Sum block implementation. It then
examines a generated model and locates the numeric changes introduced
by the optimization.

If you are not familiar with code generation control files and selection of block
implementations, see Chapter 4, “Code Generation Control Files”.

The model, simplevectorsum, consists of a subsystem, vsum, driven by a
vector input of width 10, with a scalar output. The following figure shows
the root level of the model.

The device under test is the vsum subsystem, shown in the following figure.
The subsystem contains a Sum block, configured for vector summation.

The model is configured to use a code generation control file, svsumctrl.m.
The control file (shown in the following listing) maps the SumTreeHDLEmission
implementation to the Sum block within the vsum subsystem. This
implementation, optimized for minimal latency, generates a tree-shaped
structure of adders for the Sum block.

function config = svsumctrl
% Code generation control file for simplevectorsum model.

5-4

Example: Numeric Differences

config = hdlnewcontrol(mfilename);
% Specify tree-structured adders implementaton for Sum block.
config.forEach('simplevectorsum/vsum/Sum',...

'built-in/Sum',{},...
'hdldefaults.SumTreeHDLEmission',{});

The File name field of the Configuration Parameters dialog box (shown in
the following figure) specifies that this control file is to be used during code
generation.

When code generation is initiated, Simulink HDL Coder displays messages
similar to those shown in the following example. The messages indicate that
the control file is applied; control file processing is followed by creation of the
generated model and generation of HDL code.

Applying HDL Code Generation Control Statements
1 Control Statements to be applied

5-5

5 Generating Bit-True Cycle-Accurate Models

Begin Model Generation
Generating new model: gm_simplevectorsum.mdl
Model Generation Complete.

Begin VHDL Code Generation
Generating package file hdlsrc\vsum_pkg.vhd
Working on simplevectorsum/vsum as hdlsrc\vsum.vhd
HDL Code Generation Complete.

The generated model, gm_ simplevectorsum, is displayed after code
generation. This model is shown in the following figure.

At the root level, this model appears identical to the original model, except
that the vsum subsystem has been highlighted in cyan. This highlighting
indicates that the subsystem differs in some respect from the vsum subsystem
of the original model.

The following figure shows the vsum subsystem in the generated model.
Observe that the Sum block is now implemented as a subsystem, which is
also highlighted.

The following figure shows the internal structure of the Sum subsystem.

5-6

Example: Numeric Differences

The vector sum is implemented as a tree of adders (Sum blocks). The vector
input signal is demultiplexed and connected, as five pairs of operands, to
the five leftmost adders. The widths of the adder outputs increase from left
to right, as required to avoid overflow in computing intermediate results. A
Data Conversion block, inserted before the final output, converts the 20-bit
fixed-point result to the int16 data type required by the model.

5-7

5 Generating Bit-True Cycle-Accurate Models

Example: Latency
This example uses the simplevectorsum_cascade model. This model
is identical to the model in the previous example (“Example: Numeric
Differences” on page 5-4), except that it uses a control file that selects a
cascaded implementation for the Sum block. This implementation introduces
both latency and numeric differences.

The model is configured to use the control file svsum_cascade_ctrl.m. The
control file (shown in the following listing) maps the SumCascadeHDLEmission
implementation to the Sum block within the vsum subsystem. This
implementation generates a cascade of adders for the Sum block.

function config = svsum_cascade_ctrl
% Code generation control file for simplevectorsum model.

config = hdlnewconfig(mfilename);

% specify cascaded adders implementation for Sum block

config.forEach('simplevectorsum_cascade/vsum/Sum',...
'built-in/Sum',{},...
'hdldefaults.SumCascadeHDLEmission',{});

The File name field of the Configuration Parameters dialog box (shown in the
following figure) specifies that this control file is used during code generation.

5-8

Example: Latency

When code generation is initiated, Simulink HDL Coder displays messages
similar to those shown in the following example. The messages indicate that
the control file is applied; control file processing is followed by creation of the
generated model and generation of HDL code.

Applying HDL Code Generation Control Statements

1 Control Statements to be applied

Begin Model Generation

Generating new model: gm_simplevectorsum_cascade.mdl

Model Generation Complete.

Begin VHDL Code Generation

Generating package file hdlsrc\simplevectorsum_cascade_pkg.vhd

Working on simplevectorsum_cascade/vsum as hdlsrc\vsum.vhd

Working on Timing Controller as hdlsrc\Timing_Controller.vhd

Working on simplevectorsum_cascade as hdlsrc\simplevectorsum_cascade.vhd

HDL Code Generation Complete.

5-9

5 Generating Bit-True Cycle-Accurate Models

In the generated code, partial sums are computed by adders arranged in a
cascade structure. Each adder computes a partial sum by demultiplexing and
adding several inputs in succession. These computation take several clock
cycles. On each cycle, an addition is performed; the result is then added to
the next input.

To complete all computations within one sample period, the system master
clock runs faster than the nominal sample rate of the system. A latency of one
clock cycle (in the case of this model) is required to transmit the final result
to the output. The inputs cannot change until all computations have been
performed and the final result is presented at the output.

The generated HDL code runs at two effective rates: a faster rate for
internal computations, and a slower rate for input/output. A special
Timing_Controller entity generates these rates from a single master clock
using counters and multiple clock enables. The Timing_Controller entity
definition is written to a separate code file.

The generated model, gm_simplevectorsum_cascade, is displayed after code
generation. This model is shown in the following figure.

As in the previous (gm_simplevectorsum) example, the vsum subsystem is
highlighted in cyan. This highlighting indicates that the subsystem differs in
some respect from the vsum subsystem of the original model.

The following block diagram shows the vsum subsystem in the generated
model. The subsystem has been restructured to reflect the structure of the
generated HDL code; inputs are grouped and routed to three adders for
partial sum computations.

5-10

Example: Latency

A Unit Delay (highlighted in cyan) has been inserted before the final output.
This block delays, (in this case for one sample period), the appearance of
the final sum at the output. The delay reflects the latency of the generated
HDL code.

Note The HDL code generated from the example model used in this section
is bit-true to the original Simulink model.

However, in some cases, cascaded block implementations can produce numeric
differences between the original Simulink model and the generated HDL code,
in addition to the introduction of latency. Numeric differences can arise from
saturation and rounding operations.

5-11

5 Generating Bit-True Cycle-Accurate Models

Defaults and Options for Generated Models
This section summarizes

• The defaults used by Simulink HDL Coder when generated models are
built (see “Defaults for Model Generation” on page 5-12).

• GUI options that provide control over the generation, naming, and
appearance of generated models (see “GUI Options” on page 5-13 and
“Generated Model Properties for makehdl” on page 5-14).

• makehdl properties that provide control over the generation, naming, and
appearance of generated models (see “GUI Options” on page 5-13 and
“Generated Model Properties for makehdl” on page 5-14).

Defaults for Model Generation

Model Generation
Simulink HDL Coder always creates a generated model as part of the code
generation process. The generated model is built in memory, before actual
generation of HDL code. The HDL code and the generated model are bit-true
and cycle-accurate with respect to one another.

Note The in-memory generated model is not written to a model file unless
you explicitly save it.

Naming of Generated Models
The naming convention for generated models is

prefix_modelname

where the default prefix is gm_, and the default modelname is the name of
the original model.

If code is generated more than once from the same original model, and
previously generated model(s) exist in memory, an integer is suffixed to the
name of each successively generated model. The suffix ensures that each

5-12

Defaults and Options for Generated Models

generated model has a unique name. For example, if the original model is
named test, generated models will be named gm_test, gm_test0, gm_test1,
etc.

Note Take care, when regenerating code from your models, to select the
original model for code generation, not a previously generated model.
Generating code from a generated model may introduce unintended delays or
numeric differences that could make the model operate incorrectly.

Block Highlighting
By default, blocks in a generated model that differ from the original model,
and their ancestor (parent) blocks in the model hierarchy, are highlighted in
the default color, cyan. You can quickly see whether any differences have been
introduced, by examining the root level of the generated model.

If there are no differences between the original and generated models, no
blocks will be highlighted.

GUI Options
The Simulink HDL Coder GUI provides high-level options controlling
the generation and display of generated models. More detailed control is
available through the makehdl command (see “Generated Model Properties
for makehdl” on page 5-14). Generated model options are located in the
top-level HDL Options pane of the Configuration Parameters dialog box, as
shown in the following figure.

5-13

5 Generating Bit-True Cycle-Accurate Models

The options are

• Generate HDL code: (Default) Generate code, but do not display the
generated model.

• Display generated model only: Create and display the generated model,
but do not proceed to code generation.

• Generate HDL code and display generated model: Generate both
code and model, and display the model when completed.

Generated Model Properties for makehdl
The following table summarizes makehdl properties that provide detailed
controls for the generated model.

5-14

Defaults and Options for Generated Models

Property and Value(s) Description

'Generatedmodelnameprefix',
['string']

The default name for the generated model is
gm_modelname, where gm_ is the default prefix and
modelname is the original model name. To override
the default prefix, assign a string value to this
property.

'Generatemodelname', ['string'] By default, the original model name is used as the
modelname substring of the generated model name.
To specify a different model name, assign a string
value to this property.

'CodeGenerationOutput', 'string' Controls the production of generated code and
display of the generated model. Values are
• GenerateHDLCode: (Default) Generate code, but

do not display the generated model.

• GenerateHDLCodeAndDisplayGeneratedModel:
Create and display generated model, but do not
proceed to code generation.

• DisplayGeneratedModelOnly: Generate both
code and model, and display model when
completed.

5-15

5 Generating Bit-True Cycle-Accurate Models

Property and Value(s) Description

'Highlightancestors', ['on' |
'off']

By default, blocks in a generated model that differ
from the original model, and their ancestor (parent)
blocks in the model hierarchy, are highlighted in
a color specified by the Highlightcolor property.
If you do not want the ancestor blocks to be
highlighted, set this property to'off'.

'Highlightcolor', 'RGBName' Specify the color used to highlight blocks in a
generated model that differ from the original model
(default: cyan). Specify the color (RGBName) as one
of the following color string values:

• cyan (default)

• yellow

• magenta

• red

• green

• blue

• white

• black

5-16

6

HDL Compatibility, Code
Tracing, and Block Support
Reports

HDL Compatibility Checker (p. 6-2) How to check your models for HDL
code generation compatibility

Code Tracing Using the Mapping
File (p. 6-5)

How to use a mapping file to trace
generated HDL entities back to the
corresponding Simulink systems

Supported Blocks Library (p. 6-8) How to create a library of all blocks
that are currently supported for
HDL code generation

6 HDL Compatibility, Code Tracing, and Block Support Reports

HDL Compatibility Checker
The HDL compatibility checker lets you check whether a subsystem or model
is compatible with HDL code generation. You can run the compatibility
checker from the MATLAB command line or an M-file script, or from the
Simulink GUI.

To run the compatibility checker from the command line or an M-file script,
use the checkhdl function. The syntax of the function is

checkhdl('system')

where system is the device under test (DUT), typically a subsystem within
the current Simulink model.

To run the compatibility checker from the Simulink GUI:

1 Open the Configuration Parameters dialog box or the Model Explorer.
Select the HDL Coder options category. The following figure shows the
HDL Coder pane of the Configuration Parameters dialog box.

6-2

HDL Compatibility Checker

2 Select the subsystem you want to check from the Generate HDL for
pop-up menu.

3 Click the Run Compatibility Checker button.

The HDL compatibility checker examines the specified system for any
compatibility problems, such as use of unsupported blocks, illegal data
type usage, etc. The HDL compatibility checker generates an HDL Code
Generation Check Report, which is stored in the target directory. The report
file naming convention is system_report.html, where system is the name of
the subsystem or model that was passed in to the HDL compatibility checker.

The HDL Code Generation Check Report is displayed in a browser window.
Each entry in the HDL Code Generation Check Report is hyperlinked to the
block or subsystem that caused the problem. When you click the hyperlink,
Simulink highlights and displays the block of interest (provided that the
model referenced by the report is open).

The following figure shows an HDL Code Generation Check Report that was
generated for a subsystem with a Product block that was configured with a
mixture of double and integer port data types. This configuration is legal in
Simulink, but incompatible with Simulink HDL Coder.

When you click the hyperlink in the left column, Simulink opens the
subsystem containing the offending block. The block of interest is highlighted,
as shown in the following figure.

6-3

6 HDL Compatibility, Code Tracing, and Block Support Reports

The following figure shows an HDL Code Generation Check Report that was
generated for a subsystem that passed all compatibility checks. In this case,
the report contains only a hyperlink to the subsystem that was checked.

6-4

Code Tracing Using the Mapping File

Code Tracing Using the Mapping File

Note This section refers to generated VHDL entities or Verilog modules
generically as “entities.”

A mapping file is a text report file generated by makehdl. Mapping files
are generated as an aid in tracing generated HDL entities back to the
corresponding Simulink systems.

A mapping file shows the relationship between systems in the Simulink model
and the VHDL entities or Verilog modules that were generated from them.
A mapping file entry has the form

Simulink_path --> HDL_name

where Simulink_path is the full Simulink path to a system in the Simulink
model and HDL_name is the name of the VHDL entity or Verilog module that
was generated from that system. The mapping file contains one entry per line.

In simple cases, the mapping file may contain only one entry. For example,
the symmetric_fir subsystem of the sfir_fixed demo model generates the
following mapping file:

sfir_fixed/symmetric_fir --> symmetric_fir

Mapping files are more useful when HDL code is generated from complex
models where multiple subsystems generate many entities, and in cases
where conflicts between identically named subsystems are resolved by
Simulink HDL Coder.

If a subsystem name is unique within the model, Simulink HDL Coder simply
uses the subsystem name as the generated entity name. Where identically
named subsystems are encountered, Simulink HDL Coder attempts to resolve
the conflict by appending a postfix string (by default, '_entity') to the
conflicting subsystem. If subsequently generated entity names conflict in turn
with this name, incremental numerals (1,2,3,...n) are appended.

6-5

6 HDL Compatibility, Code Tracing, and Block Support Reports

As an example, consider the model shown in the following figure. The
top-level model contains subsystems named A nested to three levels.

6-6

Code Tracing Using the Mapping File

When code is generated for the top-level subsystem A, makehdl works its way
up from the deepest level of the model hierarchy, generating unique entity
names for each subsystem.

makehdl('top/A')
Working on top/A/A/A as A_entity1.vhd
Working on top/A/A as A_entity2.vhd
Working on top/A as A.vhd

HDL Code Generation Complete.

The following example lists the contents of the resultant mapping file.

top/A/A/A --> A_entity1
top/A/A --> A_entity2
top/A --> A

Given this information, you could trace any generated entity back to its
corresponding subsystem by using the open_system command, for example:

open_system('top/A/A')

Each generated entity file also contains the Simulink path for its
corresponding subsystem in the header comments at the top of the file, as in
the following code excerpt.

-- Module: A_entity2
-- Simulink Path: top/A
-- Created: 2005-04-20 10:23:46
-- Hierarchy Level: 0

6-7

6 HDL Compatibility, Code Tracing, and Block Support Reports

Supported Blocks Library
Simulink HDL Coder provides an M-file utility, hdllib.m, that creates a
library of all blocks that are currently supported for HDL code generation.

The block library, hdlsupported.mdl, affords quick access to all supported
blocks. By constructing models using blocks from this library, you can ensure
compatibility with Simulink HDL Coder.

The set of supported blocks will change in future releases of Simulink HDL
Coder. To keep the hdlsupported.mdl current, The MathWorks recommends
that you rebuild the library each time you install a new release. To create
the library:

1 Type the following at the MATLAB prompt:

hdllib

hdllib starts generation of the hdlsupported library. Simulink loads many
libraries during the creation of the hdlsupported library. When hdllib
completes generation of the library, it does not unload these libraries.

2 After the library is generated, you must save it to a directory of your choice.
You should retain the file name hdlsupported.mdl, because this document
refers to the supported blocks library by that name.

6-8

7

Interfacing Subsystems and
Models to HDL Code

Overview of HDL Interfaces (p. 7-2) Overview of HDL interfaces
generated by Simulink HDL Coder

Generating a Black Box Interface for
a Subsystem (p. 7-3)

How to generate an interface to
existing or legacy HDL code from a
subsystem

Generating Interfaces for Referenced
Models (p. 7-6)

Code generation for models
referenced within a Model block

Code Generation for HDL
Cosimulation Blocks (p. 7-7)

Generating an interface to HDL
code for cosimulation with HDL
simulators

Pass-Through and No-Op
Implementations (p. 7-9)

Bypassing or omitting selected
subsystems in generated code

7 Interfacing Subsystems and Models to HDL Code

Overview of HDL Interfaces
Simulink HDL Coder provides a number of different ways to generate
interfaces to your hand-written or legacy HDL code. Depending on your
application, you may want to generate such an interface from different levels
of your model:

• Subsystem

• Model referenced by a higher-level model

• Cosimulation block

You can also generate a pass-through (wire) HDL implementation for a
subsystem, or omit code generation entirely for a subsystem. Both of these
techniques can be useful in cases where you need a subsystem in your
simulation, but do not need the subsystem in your generated HDL code.

7-2

Generating a Black Box Interface for a Subsystem

Generating a Black Box Interface for a Subsystem
A black box interface for a subsystem is a generated VHDL component or
Verilog module that includes only the HDL input/output port definitions for
the subsystem. By generating such a component, you can use a subsystem in
your model to generate an interface to existing hand-written HDL code.

To generate the interface, you use a control file to map one or more Subsystem
blocks to the hdldefaults.SubsystemBlackBoxHDLInstantiation
implementation. (See Chapter 4, “Code Generation Control Files” for a
detailed description of the structure and use of control files.)

As an example, consider the model and subsystem shown in the following
figures. The model, subsystst, contains a subsystem, top, which is the
device under test.

The subsystem top contains two lower-level subsystems, gencode and
Interface.

7-3

7 Interfacing Subsystems and Models to HDL Code

Suppose that you want to generate HDL code from top, with a black
box interface from the Interface subsystem. The first step would
be to create a control file that defines the Simulink path and block
type for the Interface subsystem, and maps this subsystem to the
hdldefaults.SubsystemBlackBoxHDLInstantiation implementation. The
following listing shows an example control file.

% Code generation control file - blackbox_ctrl.m

function control = blackbox_ctrl

control = hdlnewcontrol(mfilename);

% Generate a black box interface for the subsystem labeled

% Interface within the top-level device

control.forEach(...

'subsystst/top/Interface', ...

'built-in/SubSystem', {}, ...

'hdldefaults.SubsystemBlackBoxHDLInstantiation');

The control file is attached to the model when code generation is invoked. In
the following makehdl command line, VHDL code is generated by default.

makehdl('subsystst/top','HDLControlFiles',{'blackbox_ctrl.m'})

Applying User Configuration File: blackbox_ctrl.m

Begin Vhdl Code Generation

Working on subsystst/top/gencode as hdlsrc/gencode.vhd

Working on subsystst/top as hdlsrc/top.vhd

HDL Code Generation Complete.

In the makehdl progress messages, observe that the gencode subsystem
generates a separate code file (gencode.vhd) for its VHDL entity definition.
The Interface subsystem does not generate such a file. The interface code for
this subsystem is in top.vhd, generated from subsystst/top. The following
code listing shows the component definition and instantiation generated for
the Interface subsystem.

COMPONENT Interface

PORT(In1 : IN std_logic_vector(7 DOWNTO 0); -- ufix8

In2 : IN std_logic_vector(15 DOWNTO 0); -- ufix16

In3 : IN std_logic_vector(31 DOWNTO 0); -- ufix32

7-4

Generating a Black Box Interface for a Subsystem

Out1 : OUT std_logic_vector(31 DOWNTO 0) -- ufix32

);

END COMPONENT;

...

u_Interface : Interface

PORT MAP

(In1 => gencode_out1, -- ufix8

In2 => gencode_out2, -- ufix16

In3 => gencode_out3, -- ufix32

Out1 => Interface_out1 -- ufix32

);

ce_out <= enb;

The black box interface generated for subsystems is similar to the interface
generated for Model blocks, but without generation of clock signals. (See also
“Generating Interfaces for Referenced Models” on page 7-6.)

7-5

7 Interfacing Subsystems and Models to HDL Code

Generating Interfaces for Referenced Models
The Simulink model referencing feature allows you to include models in
other models as blocks. Included models are referenced through Model
blocks (see “Referencing Models” in the Simulink documentation for detailed
information).

For Model blocks, Simulink HDL Coder generates a VHDL component or a
Verilog module instantiation. However, makehdl does not attempt to generate
HDL code for the models referenced from Model blocks. You must generate
HDL code for each referenced model individually. To generate code for a
referenced model:

1 Select the referencing Model block.

2 Double-click the Model block to open its mask dialog box.

3 Click the Open Model button to open the referenced model.

4 Invoke the checkhdl and makehdl functions to check and generate code
from that model.

Note The checkhdl function does not check port data types within the
referenced model.

The Model block is useful for multiply-instantiated blocks, or for blocks for
which you already have hand-written HDL code. The generated HDL will
contain all the code that is required to interface to the referenced HDL code.
Code is generated with the following assumptions:

• Every HDL entity or module requires clock, clock enable, and reset ports.
Therefore, these ports are defined for each generated entity or module.

• Use of Simulink data types is assumed. For VHDL code, port data types
are assumed to be STD_LOGIC or STD_LOGIC_VECTOR.

7-6

Code Generation for HDL Cosimulation Blocks

Code Generation for HDL Cosimulation Blocks
Simulink HDL Coder supports HDL code generation for the HDL
Cosimulation blocks provided by the following MathWorks products:

• Link for ModelSim (this product requires the Mentor Graphics ModelSim
SE/PE HDL simulator).

• Link for Cadence Incisive (this product requires the Cadence Incisive
HDL simulator)

Each of the HDL Cosimulation blocks cosimulates a hardware component by
applying input signals to, and reading output signals from, an HDL model
that executes under an HDL simulator. For detailed information on the HDL
Cosimulation blocks, see the Link for ModelSim and Link for Cadence Incisive
documentation.

You can use an HDL Cosimulation block with Simulink HDL Coder to
generate an interface to your hand-written or legacy HDL code. When an HDL
Cosimulation block is included in a model, Simulink HDL Coder generates a
VHDL or Verilog interface, depending on the selected target language.

When the target language is VHDL, the generated interface includes

• An entity definition. The entity defines ports (input, output, and clock)
corresponding in name and data type to the ports configured on the HDL
Cosimulation block. Clock enable and reset ports are also declared.

• An RTL architecture including a component declaration, a component
configuration declaring signals corresponding to signals connected to the
HDL Cosimulation ports, and a component instantiation.

• Port assignment statements as required by the model.

When the target language is Verilog, the generated interface includes

• A module defining ports (input, output, and clock) corresponding in name
and data type to the ports configured on the HDL Cosimulation block. The
module also defines clock enable and reset ports, and wire declarations
corresponding to signals connected to the HDL Cosimulation ports.

• A module instance.

7-7

7 Interfacing Subsystems and Models to HDL Code

• Port assignment statements as required by the model.

The requirements for using the HDL Cosimulation block for code generation
are the same as those for cosimulation. If you want to check these conditions
before initiating code generation, select Update Diagram from the Simulink
Edit menu.

7-8

Pass-Through and No-Op Implementations

Pass-Through and No-Op Implementations
Simulink HDL Coder provides special-purpose implementations for
subsystems that let you use a subsystem as a wire, or simply omit a subsystem
entirely, in the generated HDL code. These implementations are summarized
in the following table.

Implementation Description

hdldefaults.PassThroughHDLEmission Provides a pass-through implementation in which
the subsystem’s inputs are passed directly to its
outputs. (In effect, the block becomes a wire in the
HDL code.)

hdldefaults.NoHDLEmission Completely removes the block from the generated
code. Lets you use the block in simulation but treat
it as a no-op in the HDL code.

Simulink HDL Coder uses these implementations for many built-in blocks
(such as Scopes and Assertions) that are significant in simulation but would
be meaningless in HDL code.

7-9

7 Interfacing Subsystems and Models to HDL Code

7-10

8

Stateflow HDL Code
Generation Support

Overview of Stateflow HDL Code
Generation (p. 8-2)

Introduction and pointers to demos
and other information

A Quick Guide to Requirements for
Stateflow HDL Code Generation
(p. 8-5)

Requirements for Stateflow charts
used in HDL code generation;
restrictions and limitations

Mapping Stateflow Chart Semantics
to HDL (p. 8-9)

How Stateflow semantics are
represented in generated HDL
code; rationale for restrictions on
Stateflow charts that target HDL
code generation

Using Mealy and Moore Machine
Types in HDL Code Generation
(p. 8-16)

Considerations for generating HDL
code from Mealy and Moore state
machines

Structuring a Model for HDL Code
Generation (p. 8-25)

Interfacing a Stateflow chart with
Simulink for HDL Code Generation

Design Patterns Using Advanced
Stateflow Features (p. 8-31)

Design patterns that take advantage
of advanced Stateflow features for
efficient HDL code generation

8 Stateflow HDL Code Generation Support

Overview of Stateflow HDL Code Generation
Stateflow is a powerful graphical design and development tool for solving
complex control and supervisory logic problems. Stateflow provides concise
descriptions of complex system behavior using hierarchical finite state
machine (FSM) theory, flow diagram notation, and state-transition diagrams.

You use a Stateflow chart to model a finite state machine or a complex control
algorithm intended for realization as an ASIC or FPGA. When the model
meets design requirements, you use Simulink HDL Coder to generate HDL
code that implements the design embodied in the model. Simulink HDL
Coder generates HDL code (VHDL or Verilog) from Stateflow charts. You can
simulate and synthesize generated HDL code using industry standard tools,
and then map your system designs into FPGAs and ASICs.

The Stateflow HDL code generator is designed to

• Support the largest possible subset of Stateflow semantics that is consistent
with HDL. This broad subset lets you generate HDL code from existing
models without significant remodeling effort.

• Generate bit-true, cycle-accurate HDL code that is fully compatible with
Stateflow simulation semantics.

In general, generation of VHDL or Verilog code from a model containing
a Stateflow chart does not differ greatly from HDL code generation from
any other model. However, there are a few special considerations related to
Stateflow HDL code generation. This chapter describes them, in the following
sections:

• “A Quick Guide to Requirements for Stateflow HDL Code Generation”
on page 8-5 summarizes requirements and restrictions that apply to
Stateflow charts intended for use in HDL code generation. Simulink
HDL Coder supports a subset of Stateflow that is suitable for HDL code
generation. The requirements and restrictions guarantee that a model can
be successfully generated as HDL and that simulation results between
Simulink and EDA tools will match.

• “Mapping Stateflow Chart Semantics to HDL” on page 8-9 discusses how
Stateflow features map onto HDL constructs. The sections also describes
aspects of Stateflow that do not lend themselves to hardware realization.

8-2

Overview of Stateflow HDL Code Generation

• “Structuring a Model for HDL Code Generation” on page 8-25 describes the
interface between your Simulink model and your Stateflow chart that is
required when generating HDL code.

• “Using Mealy and Moore Machine Types in HDL Code Generation” on
page 8-16 describes the advantages of using Mealy or Moore charts as an
alternative to Classic charts when generating HDL code.

• “Design Patterns Using Advanced Stateflow Features” on page 8-31
provides examples of the use of Stateflow extensions such as graphical
functions, truth tables, and temporal logic in HDL code generation.

Demos and Related Documentation

Demos
Simulink HDL Coder provides several demos illustrating HDL code
generation from subsystems that include Stateflow charts. These demos are:

• Greatest Common Divisor

• Pipelined Configurable FIR

• 2D FDTD Behavioral Model

• CPU Behavioral Model

To open the demo models, type the following command at the MATLAB
prompt:

demos

This command opens the Help window. In the Demos pane on the left, select
Simulink > Simulink HDL Coder. Then, double-click the icon for any of
the following demos, and follow the instructions in the demo window.

Related Documentation
If you are familiar with Stateflow and Simulink but have not yet tried
Simulink HDL Coder, see the hands-on exercises in Chapter 2, “Introduction
to HDL Code Generation”.

If you are not familiar with Stateflow, see Getting Started with Stateflow.

8-3

8 Stateflow HDL Code Generation Support

For a comprehensive guide to Stateflow features, see the Stateflow and
Stateflow Coder User’s Guide.

8-4

A Quick Guide to Requirements for Stateflow HDL Code Generation

A Quick Guide to Requirements for Stateflow HDL Code
Generation

• “Stateflow to Simulink Interface” on page 8-5

• “Data Type Usage” on page 8-5

• “Chart Initialization” on page 8-6

• “Registered Output” on page 8-6

• “Restrictions on Imported Code” on page 8-6

• “Other Restrictions” on page 8-7

This section summarizes the requirements and restrictions you should
follow when configuring Stateflow charts that are intended to target HDL
code generation. “Mapping Stateflow Chart Semantics to HDL” on page 8-9
provides a more detailed rationale for most of these requirements.

Stateflow to Simulink Interface
A Stateflow chart intended for HDL code generation must be part of a
Simulink subsystem. See “Structuring a Model for HDL Code Generation”
on page 8-25 for an example.

Data Type Usage

Supported Data Types
The current release supports a subset of MATLAB data types in Stateflow
charts intended for use in HDL code generation. Supported data types are

• Signed and unsigned integer

• Double and single

• Fixed point

• Boolean

8-5

8 Stateflow HDL Code Generation Support

Note Multidimensional arrays of these types are supported, with the
exception of data types assigned to ports. Port data types must be either
scalar or vector.

Chart Initialization
In Stateflow charts intended for HDL code generation, enable the chart
property Execute (enter) Chart at Initialization. When this property is
enabled, default transitions are tested and all actions reachable from the
default transition taken are executed. These actions correspond to the reset
process in HDL code. “Executing a Chart at Initialization” in the Stateflow
documentation describes existing restrictions under this property.

The reset action must not entail the delay of combinatorial logic. Therefore,
do not perform arithmetic in initialization actions.

Registered Output
Stateflow provides the Initialize Outputs Every Time Chart Wakes Up
chart property specifically for HDL code generation. This property lets you
control whether output is persistent (stored in registers) from one sample
time to the next. Such use of registers is termed registered output.

When the Initialize Outputs Every Time Chart Wakes Up option is
deselected (the default), registered output is used.

When the Initialize Outputs Every Time Chart Wakes Up option is
selected, registered output is not used. A default initial value (defined in the
Initial value field of the Value Attributes pane of the Data Properties
dialog box) is given to each output when the chart wakes up. This assignment
guarantees that there is no reference to outputs computed in previous time
steps.

Restrictions on Imported Code
A Stateflow HDL chart must be entirely self-contained. The following
restrictions apply:

8-6

A Quick Guide to Requirements for Stateflow HDL Code Generation

• Do not call MATLAB functions other than min or max.

• Do not use MATLAB workspace data.

• Do not call C math functions

• If the Enable C-like bit operations property is disabled, do not use the
exponentiation operator (^). The exponentiation operator is implemented
with the C Math Library function pow.

• Do not include custom code. Any information entered in the Target Options
dialog box is ignored.

Other Restrictions
Simulink HDL Coder imposes a number of additional restrictions on the use
of classic Stateflow features. These limitations exist because HDL does not
support some features of general-purpose sequential programming languages.

• Do not define machine-parented data, machine-parented events, or local
events in a Stateflow chart from which HDL code is to be generated.

Do not use the following implicit events:

- enter

- exit

- change

You can use the following implicit events:

- wakeup

- tick

Temporal logic can be used provided the base events are limited to these
types of implicit events.

• Do not use recursion through graphical functions. Simulink HDL Coder
does not currently support recursion.

• Do not explicitly use loops other than for loops, such as in flow diagrams.

Only constant-bounded loops are supported for HDL code generation. See
the Stateflow FOR Loop demo (sf_for.mdl) to learn how to create a for
loop using a graphical function.

8-7

8 Stateflow HDL Code Generation Support

• HDL does not support a goto statement. Therefore, do not use unstructured
flow diagrams, such as the flow diagram shown in the following figure.

• Do not read from output ports if outputs are not registered. (Outputs are
not registered if the Initialize Outputs Every Time Chart Wakes Up
option is selected. See also “Registered Output” on page 8-6.)

• Do not use Data Store Memory objects.

• Do not use pointer (&) or indirection (*) operators. See the discussion of
“Pointer and Address Operations” in the Stateflow documentation.

• If a Stateflow chart gets a runtime overflow error during simulation,
it is possible to disable data range error checking and generate HDL
code for the chart. However, in such cases Simulink HDL Coder cannot
guarantee that results obtained from the generated HDL code are bit-true
to results obtained from the simulation. Recommended practice is to enable
overflow checking and eliminate overflow conditions from the model during
simulation.

8-8

Mapping Stateflow Chart Semantics to HDL

Mapping Stateflow Chart Semantics to HDL
• “Software Realization of Stateflow Semantics” on page 8-9

• “Hardware Realization of Stateflow Semantics” on page 8-11

• “Restrictions for HDL Realization” on page 8-14

Software Realization of Stateflow Semantics
The top-down semantics of a Stateflow chart describe how the chart executes.
chart semantics describe an explicit sequential execution order for elements
of the chart, such as states and transitions. These deterministic, sequential
semantics map naturally to sequential programming languages, such as C. To
support the rich semantics of a Stateflow chart in the Simulink environment,
it is necessary to combine the state variable updates and output computation
in a single function that Simulink can call.

Consider the example mode shown in the following figure. The root level of
the model contains three blocks (Sum, Gain and a Stateflow chart) connected
in series.

8-9

8 Stateflow HDL Code Generation Support

The Stateflow chart from the model is shown in the following figure.

The following C code excerpt was generated by Real Time Workshop from this
example model. The code illustrates how the Stateflow chart combines the
output computation and state-variable update.

/* Output and update for atomic system: '<Root>/Chart' */

void hdl_ex_Chart(void)

{

/* Stateflow: '<Root>/Chart' */

8-10

Mapping Stateflow Chart Semantics to HDL

switch (hdl_ex_DWork.Chart.is_c1_hdl_ex) {

case hdl_ex_IN_Off:

if (hdl_ex_B.Gain >= 100.0) {

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_On;

}

break;

case hdl_ex_IN_On:

if (hdl_ex_B.Gain < 100.0) {

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_Off;

} else {

hdl_ex_B.y = hdl_ex_B.Gain;

}

break;

default:

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_On;

break;

}

}

The preceding code assigns either the state or the output, but not both. Values
of output variables, as well as state, persist from one time step to another. If
an output value is not assigned during a chart execution, the output simply
retains its value (as defined in a previous execution).

Hardware Realization of Stateflow Semantics
The following diagram shows a sequential implementation of Stateflow
semantics for output/update computations, appropriate for targeting the C
language.

8-11

8 Stateflow HDL Code Generation Support

A mapping from Stateflow semantics to an HDL implementation demands a
different approach. The following requirements must be met:

• Requirement 1: Hardware designs require separability of output and
state update functions.

• Requirement 2: HDL is a concurrent language. To achieve the goal of
bit-true simulation, execution ordering must be correct.

To meet Requirement 1, an FSM is coded in HDL as two concurrent
blocks that execute under different conditions. One block evaluates the
transition conditions, computes outputs and speculatively computes the
next state variables. The other block updates the current state variables
from the available next state and performs the actual state transitions. This
second block is activated only on the trigger edge of the clock signal, or an
asynchronous reset signal.

In practice, output computations usually occur more often than state updates.
The presence of inputs drives the computation of outputs. State transitions
occur at regular intervals (whenever the chart is activated).

The following diagram shows a concurrent implementation of Stateflow
semantics for output and update computations, appropriate for targeting
HDL.

8-12

Mapping Stateflow Chart Semantics to HDL

The HDL code generator reuses the original single-function implementation
of Stateflow semantics almost without modification. There is one important
difference: instead of computing with state variables directly, all state
computations are performed on local shadow variables. These variables
are local to the HDL function update_chart. At the beginning of the
update_chart functions, current_state is copied into the shadow variables.
At the end of the update_chart function, the newly computed state is
transferred to registers called collectively next_state. The values held
in these registers are copied to current_state (also registered) when
update_state is called.

By using local variables, this approach maps Stateflow sequential semantics
to HDL sequential statements, avoiding the use of concurrent statements. For
instance, Stateflow local variables in function scope map to VHDL variables
in process scope. In VHDL, variable assignment is sequential. Therefore,
statements in a Stateflow function that uses local variables can safely map to
statements in a VHDL process that uses corresponding variables. The VHDL
assignments execute in the same order as the assignments in the Stateflow
function. The execution sequence is automatically correct.

8-13

8 Stateflow HDL Code Generation Support

Restrictions for HDL Realization
Some restrictions on Stateflow usage are required to achieve a valid mapping
from Stateflow to HDL code. These are summarized briefly in “A Quick
Guide to Requirements for Stateflow HDL Code Generation” on page 8-5. The
following sections give a more detailed rationale for most of these restrictions.

Self-Contained Stateflow Charts
The Stateflow C target allows generated code to have some dependencies
on code or data that is external to the chart. Stateflow charts intended for
HDL code generation, however, must be self-contained. Observe the following
rules for creating self-contained charts:

• Do not use C math functions such as sin and pow. There is no HDL
counterpart to the C math library.

• Do not use calls to functions coded in M or any language other than HDL.
For example, do not call M functions for a simulation target, as in the
following statement:

ml.disp(hello)

• Do not use custom code. Stateflow does not provide a mechanism for
embedding external HDL code into Stateflow generated HDL code. Custom
C code (user-written C code intended for linkage with C code generated
from a Stateflow chart) is ignored during HDL code generation.

See also Chapter 7, “Interfacing Subsystems and Models to HDL Code”.

• Do not use pointer (&) or indirection (*) operators. Pointer and indirection
operators have no function in the Stateflow action language in the absence
of custom code. Also, pointer and indirection operators do not map directly
to synthesizable HDL.

• Do not share data (via machine-parented data or Data Store Memory
blocks) between charts. Simulink HDL Coder does not map such global
data to HDL, because HDL does not support global data.

Stateflow Charts Must Not Use Features Unsupported by HDL
When creating Stateflow charts intended for HDL code generation, follow
these guidelines to avoid using Stateflow language features that cannot be
mapped to HDL:

8-14

Mapping Stateflow Chart Semantics to HDL

• Avoid recursion. While Stateflow permits recursion (through both event
processing and user-written recursive graphical functions), HDL does not
allow recursion.

• Do not use Stateflow machine-parented and local events. These event types
do not have equivalents in HDL. Therefore, these event types are not
supported for HDL code generation.

• Avoid unstructured code. Although Stateflow allows unstructured code to
be written (through transition flow diagrams and graphical functions), this
usage results in goto statements and multiple function return statements.
HDL does not support either goto statements or multiple function return
statements.

• Select the Execute (enter) Chart At Initialization chart property. This
option executes the update chart function immediately following chart
initialization. The option is needed for HDL because outputs must be
available at time 0 (hardware reset). You must select this option to ensure
bit-true HDL code generation.

8-15

8 Stateflow HDL Code Generation Support

Using Mealy and Moore Machine Types in HDL Code
Generation

• “Generating HDL for a Mealy Finite State Machine” on page 8-17

• “Generating HDL Code for a Moore Finite State Machine” on page 8-20

Stateflow supports modeling of three types of state machines:

• Classic (default)

• Mealy

• Moore

This section discusses issues you should consider when generating HDL code
for Mealy and Moore state machines. See “Building Mealy and Moore Charts
in Stateflow” in the Stateflow documentation for detailed information on
Mealy and Moore state machines.

Mealy and Moore state machines differ in the following ways:

• The outputs of a Mealy state machine are a function of the current state
and inputs.

• The outputs of a Moore state machine are a function of the current state
only.

Moore and Mealy state charts can be functionally equivalent; an equivalent
Mealy chart can derive from a Moore chart, and vice versa. A Mealy state
machine has a richer description and usually requires a smaller number of
states.

The principal advantages of using Mealy or Moore charts as an alternative
to Classic charts are:

• Stateflow verifies the Mealy and Moore charts you create to ensure that
they conform to their formal definitions and semantic rules. Stateflow
reports violations at compile time (not at design time).

• Moore charts provide a more efficient implementation of Stateflow than
Classic charts, for both C and HDL targets.

8-16

Using Mealy and Moore Machine Types in HDL Code Generation

The execution of a Mealy or Moore chart at time t is the evaluation of the
function represented by that chart at time t. The initialization property for
output ensures that every output is defined at every time step. Specifically,
the output of a Mealy or Moore chart at one time step must not depend on the
output of the chart at an earlier time step.

Consider the outputs of a Stateflow chart. Stateflow permits output latching.
That is, the value of an output computed at time t persists until time t+d,
when it is overwritten. The output latching feature in Stateflow corresponds
to registered outputs. Therefore, Mealy and Moore charts intended for HDL
code generation should not use registered outputs.

Generating HDL for a Mealy Finite State Machine
When generating HDL code for a chart that models a Mealy state machine,
make sure that

• The chart meets all general code generation requirements, as described in
“A Quick Guide to Requirements for Stateflow HDL Code Generation”
on page 8-5.

• The Initialize Outputs Every Time Chart Wakes Up option is selected.
This option is selected automatically when the Mealy option is selected from
the State Machine Type pop-up menu, as shown in the following figure.

8-17

8 Stateflow HDL Code Generation Support

• Actions are associated with transitions inner and outer transitions only.

Mealy actions are associated with transitions. In Mealy machines, output
computation is expected to be driven by the change on inputs. In fact,
the dependence of output on input is the fundamental distinguishing
factor between the formal definitions of Mealy and Moore machines. The
requirement that actions be given on transitions is to some degree stylistic,
rather than necessary to enforce Mealy semantics. However, it is natural that
output computation follows input conditions on input, because transition
conditions are primarily input conditions in any machine type.

The following figure shows an example of a Stateflow chart that models a
Mealy state machine.

8-18

Using Mealy and Moore Machine Types in HDL Code Generation

The following code example lists the VHDL process code generated for the
Mealy chart.

Chart : PROCESS (is_Chart, coin)

-- local variables

BEGIN

is_Chart_next <= is_Chart;

coke <= '0';

CASE is_Chart IS

WHEN IN_got_0 =>

IF coin = 1.0 THEN

coke <= '0';

8-19

8 Stateflow HDL Code Generation Support

is_Chart_next <= IN_got_N;

ELSIF coin = 2.0 THEN

coke <= '0';

is_Chart_next <= IN_got_D;

END IF;

WHEN IN_got_D =>

IF coin = 2.0 THEN

coke <= '1';

is_Chart_next <= IN_got_N;

ELSIF coin = 1.0 THEN

coke <= '1';

is_Chart_next <= IN_got_0;

END IF;

WHEN IN_got_N =>

IF coin = 1.0 THEN

coke <= '0';

is_Chart_next <= IN_got_D;

END IF;

WHEN OTHERS =>

is_Chart_next <= IN_got_0;

END CASE;

END PROCESS Chart;

Generating HDL Code for a Moore Finite State
Machine
When generating HDL code for a chart that models a Moore state machine,
make sure that

• The chart meets all general code generation requirements, as described in
“A Quick Guide to Requirements for Stateflow HDL Code Generation”
on page 8-5.

8-20

Using Mealy and Moore Machine Types in HDL Code Generation

• The Initialize Outputs Every Time Chart Wakes Up option is selected.
This option is selected automatically when the Moore option is selected from
the State Machine Type pop-up menu, as shown in the following figure.

• Actions occur in states only. These actions are unlabeled, and execute when
exiting the states or remaining in the states.

Moore actions must be associated with states, because output computation
must be dependent only on states, not input. Therefore, the current
configuration of active states at time step t determines output. Thus, the
single action in a Moore state serves as both during and exit action. If
state S is active when a chart wakes up at time t, it contributes to the
output whether it remains active into time t+1 or not.

• No local data or graphical functions are used.

8-21

8 Stateflow HDL Code Generation Support

Function calls and local data are not allowed in a Moore chart. This ensures
that output does not depend on input in ways that would be difficult for
the HDL code generator to verify. These restrictions strongly encourage
coding practices that separate output and input.

• No references to input occur outside of transition conditions.

• Output computation occurs only in leaf states.

This restriction guarantees that Stateflow’s top-down semantics compute
outputs as if actions were evaluated strictly before inner and outer flow
diagrams.

The following figure shows a Stateflow chart of a Moore state machine.

The following code example illustrates generated Verilog code for the Moore
chart.

8-22

Using Mealy and Moore Machine Types in HDL Code Generation

Chart : PROCESS (is_Chart, w)

-- local variables

VARIABLE is_Chart_temp : T_state_type_is_Chart;

BEGIN

is_Chart_temp := is_Chart;

z <= '0';

CASE is_Chart_temp IS

WHEN IN_A =>

z <= '0';

WHEN IN_B =>

z <= '0';

WHEN IN_C =>

z <= '1';

WHEN OTHERS =>

is_Chart_temp := IN_NO_ACTIVE_CHILD;

END CASE;

CASE is_Chart_temp IS

WHEN IN_A =>

IF w = '1' THEN

is_Chart_temp := IN_B;

END IF;

WHEN IN_B =>

IF w = '1' THEN

is_Chart_temp := IN_C;

ELSIF w = '0' THEN

is_Chart_temp := IN_A;

END IF;

WHEN IN_C =>

IF w = '0' THEN

is_Chart_temp := IN_A;

END IF;

8-23

8 Stateflow HDL Code Generation Support

WHEN OTHERS =>

is_Chart_temp := IN_A;

END CASE;

is_Chart_next <= is_Chart_temp;

END PROCESS Chart;

8-24

Structuring a Model for HDL Code Generation

Structuring a Model for HDL Code Generation
In general, generation of VHDL or Verilog code from a model containing a
Stateflow chart does not differ greatly from HDL code generation from any
other model.

A Stateflow chart intended for HDL code generation must be part of a
Simulink subsystem that represents the Device Under Test (DUT). The DUT
corresponds to the top level VHDL entity or Verilog module for which code
is generated, tested and eventually synthesized. The top level components
in Simulink that drive the DUT correspond to the behavioral Simulink test
bench.

You may need to restructure your models to meet this requirement. If the
Stateflow chart for which you want to generate code is at the root level of
your model, embed the chart in a subsystem and connect the appropriate
signals to the subsystem inputs and outputs. In most cases, you can do this by
simply clicking on the chart and then selecting Edit > Create Subsystem
in the model window.

As an example of a properly structured model, consider the fan_control
model shown in the following figure. In this model, the subsystem SFControl
is the DUT. Two input signals drive the DUT.

8-25

8 Stateflow HDL Code Generation Support

The SFControl subsystem, shown in the following figure, contains a Stateflow
chart, Fan Controller. The chart that has two inputs and an output.

8-26

Structuring a Model for HDL Code Generation

The Fan Controller chart, shown in the following figure, models a simple
system that monitors input temperature data (temp) and turns on the two
fans (FAN1 and FAN2) based on the range of the temperature. A manual
override input (switch) is provided to turn the fans off forcibly. At each time
step the Fan Controller outputs a value (airflow) representing the number
of fans that are turned on.

8-27

8 Stateflow HDL Code Generation Support

The following makehdl command generates VHDL code (by default) for the
subsystem containing the Stateflow chart.

makehdl(`fan_control/SF_Control')

As code generation for this subsystem proceeds, Simulink HDL Coder displays
progress messages as shown in the following listing:

Begin VHDL Code Generation

Working on fan_control/SFControl as hdlsrc\SFControl.vhd

8-28

Structuring a Model for HDL Code Generation

Working on fan_control/SFControl/Fan Controller as hdlsrc\Fan_Controller.vhd

Stateflow parsing for model "fan_control"...Done

Stateflow code generation for model "fan_control"....Done

HDL Code Generation Complete.

As the progress messages indicate, Simulink HDL Coder generates a separate
code file for each level of hierarchy in the model. The following VHDL files are
written to the target directory, hdlsrc:

• Fan_Controller.vhd contains the entity and architecture code
(Fan_Controller) for the Stateflow chart.

• SFControl.vhd contains the code for the top level subsystem. This file also
instantiates a Fan_Controller component.

Simulink HDL Coder also generates a number of other files (such as scripts
for HDL simulation and synthesis tools) in the target directory. See the “HDL
Code Generation Defaults” on page 13-13 for full details on generated files.

The following code excerpt shows the entity declaration generated for the
Fan_Controller Stateflow chart inFan_Controller.vhd.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY Fan_Controller IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

temp : IN std_logic_vector(11 DOWNTO 0);

b_switch : IN std_logic_vector(1 DOWNTO 0);

airflow : OUT std_logic_vector(15 DOWNTO 0));

END Fan_Controller;

This model shows the use of fixed point data types without scaling (e.g.
ufix12, sfix2) , as supported by Stateflow for HDL code generation. At the
entity/instantiation boundary, all signals in the generated code are typed as
std_logic or std_logic_vector, following general VHDL coding standard

8-29

8 Stateflow HDL Code Generation Support

conventions. In the architecture body, these signals are assigned to the
corresponding typed signals for further manipulation and access.

8-30

Design Patterns Using Advanced Stateflow Features

Design Patterns Using Advanced Stateflow Features
• “Temporal Logic” on page 8-31

• “Graphical Function” on page 8-34

• “Hierarchy and Parallelism” on page 8-36

• “Stateless Charts” on page 8-40

• “Truth Tables” on page 8-43

The following sections describe several design patterns that will help you to
use advanced Stateflow features to generate efficient HDL code.

Temporal Logic
Stateflow temporal logic operators (such as after, before, or every) are
Boolean operators that operate on recurrence counts of Stateflow events.
Temporal logic operators can appear only in conditions on transitions that
from states, and in state actions. Although temporal logic does not introduce
any new events into a Stateflow model, it is useful to think of the change of
value of a temporal logic condition as an event. You can use temporal logic
operators in many cases where a counter is required. A common use case
would be to use temporal logic to implement a time-out counter.

For detailed information about Stateflow temporal logic, see “Using Temporal
Logic in Actions” in the Stateflow documentation.

The chart shown in the following figure uses temporal logic in a design for a
debouncer. Instead of instantaneously switching between on and off states,
the chart uses two intermediate states and temporal logic to ignore transients.
The transition is committed based on a time-out.

8-31

8 Stateflow HDL Code Generation Support

The following code excerpt shows VHDL code generated from this chart.

Chart : PROCESS (is_Chart, temporalCounter_i1, y_reg, u)

-- local variables

VARIABLE temporalCounter_i1_temp : unsigned(7 DOWNTO 0);

BEGIN

is_Chart_next <= is_Chart;

y_reg_next <= y_reg;

temporalCounter_i1_temp := temporalCounter_i1;

IF temporalCounter_i1_temp < to_unsigned(7, 8) THEN

temporalCounter_i1_temp :=

tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(temporalCounter_i1_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

8-32

Design Patterns Using Advanced Stateflow Features

END IF;

CASE is_Chart IS

WHEN IN_tran1 =>

IF u = '1' THEN

is_Chart_next <= IN_on;

y_reg_next <= '1';

ELSIF temporalCounter_i1_temp >= to_unsigned(3, 8) THEN

is_Chart_next <= IN_off;

y_reg_next <= '0';

END IF;

WHEN IN_tran2 =>

IF temporalCounter_i1_temp >= to_unsigned(5, 8) THEN

is_Chart_next <= IN_on;

y_reg_next <= '1';

ELSIF u = '0' THEN

is_Chart_next <= IN_off;

y_reg_next <= '0';

END IF;

WHEN IN_off =>

IF u = '1' THEN

is_Chart_next <= IN_tran2;

temporalCounter_i1_temp := to_unsigned(0, 8);

END IF;

WHEN IN_on =>

IF u = '0' THEN

is_Chart_next <= IN_tran1;

temporalCounter_i1_temp := to_unsigned(0, 8);

END IF;

WHEN OTHERS =>

is_Chart_next <= IN_on;

8-33

8 Stateflow HDL Code Generation Support

y_reg_next <= '1';

END CASE;

temporalCounter_i1_next <= temporalCounter_i1_temp;

END PROCESS Chart;

Graphical Function
A Stateflow graphical function is a function defined graphically by a flow
diagram. Graphical functions reside in a Stateflow chart along with the
diagrams that invoke them. Like MATLAB and C functions, graphical
functions can accept arguments and return results. Graphical functions can
be invoked in transition and state actions.

The “Stateflow Notation” chapter of the Stateflow documentation includes a
detailed description of graphical functions.

The following figure shows a graphical function that implements a 64–by–64
counter.

8-34

Design Patterns Using Advanced Stateflow Features

The following code excerpt shows VHDL code generated for this graphical
function.

x64_counter_sf : PROCESS (x, y, outx_reg, outy_reg)

-- local variables

VARIABLE x_temp : unsigned(7 DOWNTO 0);

VARIABLE y_temp : unsigned(7 DOWNTO 0);

BEGIN

outx_reg_next <= outx_reg;

outy_reg_next <= outy_reg;

x_temp := x;

y_temp := y;

x_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(x_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

IF x_temp < to_unsigned(64, 8) THEN

8-35

8 Stateflow HDL Code Generation Support

NULL;

ELSE

x_temp := to_unsigned(0, 8);

y_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(y_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

IF y_temp < to_unsigned(64, 8) THEN

NULL;

ELSE

y_temp := to_unsigned(0, 8);

END IF;

END IF;

outx_reg_next <= x_temp;

outy_reg_next <= y_temp;

x_next <= x_temp;

y_next <= y_temp;

END PROCESS x64_counter_sf;

Hierarchy and Parallelism
Stateflow charts support both hierarchy (states containing other states) and
parallelism (multiple states that can be active simultaneously).

Parallelism, in Stateflow, is not synonymous with concurrency. In Stateflow
semantics, parallel states can be active simultaneously, but they are executed
sequentially according to their execution order. (Execution order is displayed
on the upper right corner of a parallel state).

For detailed information on hierarchy and parallelism, see “Stateflow
Hierarchy of Objects” and “Execution Order for Parallel States” in the
Stateflow documentation.

For HDL code generation, an entire chart maps to a single output computation
process. Within the output computation process:

• The execution of parallel states proceeds sequentially.

• Nested hierarchical states map to nested CASE statements in the generated
HDL code.

8-36

Design Patterns Using Advanced Stateflow Features

The following figure shows a chart that models a security system. The chart
contains

• Simultaneously active parallel states (in order of execution: Door, Motion,
Win, Alarm).

• Hierarchy, where the parallel states contain child states. For example,
the Motion state contains Active and Inactive states, and the Active state
contains further nested states (Debouncing and Idle).

• Graphical functions (such as send_alert and send_warn) that set and
reset flags, simulating broadcast and reception of events. These functions
are used, rather than Stateflow local events, because local events are not
supported for HDL code generation.

8-37

8 Stateflow HDL Code Generation Support

The following VHDL code excerpt was generated for the parallel Door
and Motion states from this chart. The higher-level CASE statements
corresponding to Door and Motion are generated sequentially to match
Stateflow simulation semantics. The hierarchy of nested states maps to
nested CASE statements in VHDL.

CASE is_Door IS

WHEN IN_Active =>

IF D_mode = '0' THEN

is_Door_next <= IN_Disabled;

ELSIF tmw_to_boolean(Door_sens AND tmw_to_stdlogic(is_On = IN_Idle)) THEN

8-38

Design Patterns Using Advanced Stateflow Features

alert_temp := '1';

END IF;

WHEN IN_Disabled =>

IF D_mode = '1' THEN

is_Door_next <= IN_Active;

ELSIF tmw_to_boolean(Door_sens) THEN

warn_temp := '1';

END IF;

WHEN OTHERS =>

--On the first sample call the door mode is set to active.

is_Door_next <= IN_Active;

END CASE;

--This state models the modes of a motion detector sensor and implements logic

-- to respond when that sensor is producing a signal.

CASE is_Motion IS

WHEN IN_Active =>

IF M_mode = '0' THEN

is_Active_next <= IN_NO_ACTIVE_CHILD;

is_Motion_next <= IN_Disabled;

ELSE

CASE is_Active IS

WHEN IN_Debouncing =>

IF tmw_to_boolean(('1' AND tmw_to_stdlogic(temporalCounter_i2_temp >=

to_unsigned(1, 8))) AND tmw_to_stdlogic(is_On = IN_Idle))

THEN

alert_temp := '1';

is_Active_next <= IN_Debouncing;

temporalCounter_i2_temp := to_unsigned(0, 8);

ELSIF tmw_to_boolean(NOT Mot_sens) THEN

is_Active_next <= b_IN_Idle;

END IF;

8-39

8 Stateflow HDL Code Generation Support

WHEN b_IN_Idle =>

IF tmw_to_boolean(Mot_sens) THEN

is_Active_next <= IN_Debouncing;

temporalCounter_i2_temp := to_unsigned(0, 8);

END IF;

WHEN OTHERS =>

NULL;

END CASE;

Stateless Charts
Stateflow charts consisting of pure flow diagrams (i.e., charts having no
states) are useful in capturing if-then-else constructs used in procedural
languages like C. The “Stateflow Notation” chapter in the Stateflow
documentation discusses flow diagrams in detail.

As an example, consider the following logic, expressed in C-like pseudocode.

if(U1==1) {
if(U2==1) {

Y = 1;
}else{

Y = 2;
}

}else{
if(U2<2) {

Y = 3;
}else{

Y = 4;
}

}

The following figures illustrate how to model this control flow using a
stateless Stateflow chart. The root model contains a subsystem and inputs
and outputs to the chart.

8-40

Design Patterns Using Advanced Stateflow Features

8-41

8 Stateflow HDL Code Generation Support

The following figure shows the Stateflow flow diagram that implements the
if-then-else logic.

The following generated VHDL code excerpt shows the nested IF-ELSE
statements obtained from the flow diagram.

Chart : PROCESS (Y1_reg, Y2_reg, U1, U2)

-- local variables

BEGIN

Y1_reg_next <= Y1_reg;

Y2_reg_next <= Y2_reg;

IF unsigned(U1) = to_unsigned(1, 8) THEN

IF unsigned(U2) = to_unsigned(1, 8) THEN

Y1_reg_next <= to_unsigned(1, 8);

ELSE

Y1_reg_next <= to_unsigned(2, 8);

END IF;

8-42

Design Patterns Using Advanced Stateflow Features

ELSIF unsigned(U2) < to_unsigned(2, 8) THEN

Y1_reg_next <= to_unsigned(3, 8);

ELSE

Y1_reg_next <= to_unsigned(4, 8);

END IF;

Y2_reg_next <= tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(unsigned(U1), 9), 10)

+ tmw_to_unsigned(tmw_to_unsigned(unsigned(U2), 9), 10), 8);

END PROCESS Chart;

Truth Tables
Stateflow Truth Table functions (see “Truth Table Functions” in the Stateflow
documentation) are well-suited for implementing compact combinatorial logic.
A typical application for Truth Tables is to implement nonlinear quantization
or threshold logic. Consider the following logic:

Y = 1 when 0 <= U <= 10
Y = 2 when 10 < U <= 17
Y = 3 when 17 < U <= 45
Y = 4 when 45 < U <= 52
Y = 5 when 52 < U

A stateless chart with a single call to a Truth Table function can represent
this logic succinctly.

The following figure shows a model containing a subsystem, DUT.

8-43

8 Stateflow HDL Code Generation Support

The subsystem contains a chart, quantizer, as shown in the following figure.

8-44

Design Patterns Using Advanced Stateflow Features

The next figure shows the quantizer chart, containing the Truth Table.

8-45

8 Stateflow HDL Code Generation Support

The following figure shows the threshold logic, as displayed in the Truth
Table Editor.

8-46

Design Patterns Using Advanced Stateflow Features

The following code excerpt shows VHDL code generated for the quantizer
chart.

quantizer : PROCESS (Y_reg, U)

-- local variables

VARIABLE aVarTruthTableCondition_1 : std_logic;

VARIABLE aVarTruthTableCondition_2 : std_logic;

VARIABLE aVarTruthTableCondition_3 : std_logic;

VARIABLE aVarTruthTableCondition_4 : std_logic;

BEGIN

Y_reg_next <= Y_reg;

-- Condition #1

aVarTruthTableCondition_1 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(10, 8));

-- Condition #2

aVarTruthTableCondition_2 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(17, 8));

-- Condition #3

aVarTruthTableCondition_3 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(45, 8));

-- Condition #4

aVarTruthTableCondition_4 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(52, 8));

IF tmw_to_boolean(aVarTruthTableCondition_1) THEN

-- D1

-- Action 1

Y_reg_next <= to_unsigned(1, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_2) THEN

-- D2

-- Action 2

Y_reg_next <= to_unsigned(2, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_3) THEN

-- D3

-- Action 3

Y_reg_next <= to_unsigned(3, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_4) THEN

-- D4

-- Action 4

Y_reg_next <= to_unsigned(4, 8);

ELSE

-- Default

-- Action 5

Y_reg_next <= to_unsigned(5, 8);

8-47

8 Stateflow HDL Code Generation Support

END IF;

END PROCESS quantizer;

8-48

9

Generating HDL Code with
the Embedded MATLAB
Function Block

Introduction (p. 9-3) Overview of the Embedded MATLAB
Function block and its application
in HDL code generation; pointers to
related documentation and demos

Tutorial Example: Incrementer
(p. 9-5)

Step-by-step tutorial shows how to
incorporate an Embedded MATLAB
Function block into your model for
code generation

Useful Embedded MATLAB Design
Patterns for HDL (p. 9-27)

Design patterns that will help you to
use advanced Embedded MATLAB
features

Recommended Practices (p. 9-43) Recommended option settings and
procedures for optimal Embedded
MATLAB Function block for HDL
code generation

9 Generating HDL Code with the Embedded MATLAB Function Block

Language Support (p. 9-45) Describes Embedded MATLAB
language features supported,
and restrictions that apply, when
generating HDL code

Other Limitations (p. 9-53) Describes other limitations that
apply when generating HDL code
with the Embedded MATLAB
Function block

9-2

Introduction

Introduction
The Embedded MATLAB Function block contains a MATLAB function in a
Simulink model. The function’s inputs and outputs are represented by ports
on the block, which allow you to interface your Simulink model to the function
code. When you generate HDL code for an Embedded MATLAB Function
block, Simulink HDL Coder generates two main HDL code files:

• A file containing entity and architecture code that implement the actual
algorithm or computations generated for the Embedded MATLAB Function
block.

• A file containing an entity definition and RTL architecture that provide a
black box interface to the algorithmic code generated for the Embedded
MATLAB Function block.

The structure of these code files is analogous to the structure of the model,
in which a subsystem provides an interface between the root model and the
function in the Embedded MATLAB Function block.

The Embedded MATLAB Function block supports a powerful subset of the
MATLAB language that is well-suited to HDL implementation of various DSP
and telecommunications algorithms, such as:

• Sequence and pattern generators

• Encoders and decoders

• Interleavers and deinterleaver

• Modulators and demodulators

• Multipath channel models; impairment models

• Timing recovery algorithms

• Viterbi algorithm; Maximum Likelihood Sequence Estimation (MLSE)

• Adaptive equalizer algorithms

Related Documentation and Demos
The following documentation and demos provide further information on the
Embedded MATLAB Function block.

9-3

9 Generating HDL Code with the Embedded MATLAB Function Block

Related Documentation
For general documentation on the Embedded MATLAB Function block, see:

• “Using the Embedded MATLAB Function Block” in the Simulink
documentation

• Embedded MATLAB Function block reference in the Simulink
documentation

When generating code for the Embedded MATLAB Function block, Simulink
HDL Coder supports most of the fixed-point runtime library functions
supported by Embedded MATLAB. See “Working with the Fixed-Point
Embedded MATLAB Subset” in the Fixed Point Toolbox documentation for a
complete list of these functions, and general information on limitations that
apply to the use of Fixed-Point Toolbox with Embedded MATLAB.

Demos
The hdlcoderviterbi2.mdl demo models a Viterbi decoder, incorporating an
Embedded MATLAB Function block for use in simulation and HDL code
generation. To open the model, type the following command at the MATLAB
command line:

hdlcoderviterbi2

After the model opens, follow the instructions in the demo window.

9-4

Tutorial Example: Incrementer

Tutorial Example: Incrementer
This tutorial contains the following topics:

• “Example Model Overview” on page 9-5

• “Setting Up” on page 9-8

• “Creating the Model and Configuring General Model Settings” on page 9-9

• “Adding an Embedded MATLAB Function Block to the Model” on page 9-10

• “Setting Optimal Fixed Point Options for the Embedded MATLAB Function
Block” on page 9-11

• “Programming the Embedded MATLAB Function” on page 9-13

• “Constructing and Connecting the DUT_eML_Block Subsystem” on page
9-16

• “Compiling the Model and Displaying Port Data Types” on page 9-22

• “Simulating the eml_hdl_incrementer Model” on page 9-22

• “Generating HDL Code” on page 9-23

Example Model Overview
In this tutorial, you construct and configure a simple model,
eml_hdl_incrementer, and then generate VHDL code from the model.
eml_hdl_incrementer includes an Embedded MATLAB Function block
that implements a simple fixed-point counter function, incrementer. The
incrementer function is invoked once during each sample period of the
model. The function maintains a persistent variable count, which is either
incremented or reinitialized to a preset value (ctr_preset_val), depending
on the value passed in to the ctr_preset input of the Embedded MATLAB
Function block . The function returns the counter value (counter) at the
output of the Embedded MATLAB Function block.

The Embedded MATLAB Function block is contained in a subsystem,
DUT_eML_Block . The subsystem functions as the device under test (DUT)
from which HDL code is generated. The following figure shows the subsystem.

9-5

9 Generating HDL Code with the Embedded MATLAB Function Block

The root-level model drives the subsystem and includes Display and To
Workspace blocks for use in simulation. (The Display and To Workspace
blocks do not generate any HDL code.) The following figure shows the model.

9-6

Tutorial Example: Incrementer

Tip If you do not want to construct the model step by step, or do not have
time, the example model is available in the Simulink HDL Coder demos
directory as the following file:

MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\eml_hdl_incrementer.mdl

The Incrementer Function Code
The following code listing gives the complete incrementer function definition:

function counter = incrementer(ctr_preset, ctr_preset_val)

% The function incrementer implements a preset counter that counts

% how many times this block is called.

%

% This example function shows how to model memory with persistent variables,

% using fimath settings suitable for HDL. It also demonstrates MATLAB

% operators and other language features that Simulink HDL Coder supports

% for code generation from Embedded MATLAB Function blocks.

%

% On the first call, the result 'counter' is initialized to zero.

% The result 'counter' saturates if called more than 2^14-1 times.

% If the input ctr_preset receives a nonzero value, the counter is

% set to a preset value passed in to the ctr_preset_val input.

persistent current_count;

if isempty(current_count)

% zero the counter on first call only

current_count = uint32(0);

end

counter = getfi(current_count);

if ctr_preset

% set counter to preset value if input preset signal is nonzero

counter = ctr_preset_val;

else

9-7

9 Generating HDL Code with the Embedded MATLAB Function Block

% otherwise count up

inc = counter + getfi(1);

counter = getfi(inc);

end

% store counter value for next iteration

current_count = uint32(counter);

function hdl_fi = getfi(val)

nt = numerictype(0,14,0);

fm = fimath('OverflowMode', 'saturate', ...

'RoundMode', 'floor', ...

'ProductMode', 'FullPrecision', ...

'ProductWordLength', 32,...

'SumMode', 'FullPrecision', ...

'SumWordLength', 32);

hdl_fi = fi(val, nt, fm);

Setting Up
Before you begin building the example model, set up a working directory
and (if necessary), build an HDL supported blocks library, as described in
the following sections.

Setting Up a Directory

1 Start MATLAB.

2 Create a directory named eml_tut, for example:

mkdir D:\work\eml_tut

The eml_tut directory stores the model you create, and also contains
directories and code generated by Embedded MATLAB and Simulink HDL
Coder. The location of the directory does not matter, except that it should
not be within the MATLAB directory tree.

3 Make the eml_tut directory your working directory, for example:

9-8

Tutorial Example: Incrementer

cd D:\work\eml_tut

Creating the Model and Configuring General Model
Settings
In this section, you create a model and set some parameters to values
recommended for HDL code generation, using the Simulink HDL Coder M-file
utility, hdlsetup.m. The hdlsetup command uses the Simulink set_param
function to set up models for HDL code generation quickly and consistently.
See “Initializing Model Parameters with hdlsetup” on page 2-7 for further
information about hdlsetup.

To set the model parameters:

1 Create a new Simulink model.

2 Save the model as eml_hdl_incrementer.mdl.

3 At the MATLAB command prompt, type:

hdlsetup('eml_hdl_incrementer')

4 Select Configuration Parameters from the Simulation menu in the
eml_hdl_incrementer model window.

The Configuration Parameters dialog box opens with the Solver options
pane displayed.

5 Set the following Solver options, which are useful in simulating this model:

Fixed step size : 1.

Stop time : 5.

6 Click Apply. Then close the Configuration Parameters dialog box.1.

7 Select Save from the Simulink File menu, to save the model with its new
settings.

9-9

9 Generating HDL Code with the Embedded MATLAB Function Block

Adding an Embedded MATLAB Function Block to the
Model

1 Open the Simulink Library Browser. Then, select the
Simulink/User-Defined Functions sublibrary.

2 Select the Embedded MATLAB Function block from the library window
and add it to the Simulink model.

The model should now appear as shown on the following figure:

3 Change the block label from Embedded MATLAB Function to
eml_inc_block.

The model should now appear as shown on the following figure:

9-10

Tutorial Example: Incrementer

4 Save the model.

5 Close the hdlsupported library window.

Setting Optimal Fixed Point Options for the
Embedded MATLAB Function Block
This section describes how to set up the FIMATH specification and other fixed
point options that are recommended for efficient HDL code generation from
the Embedded MATLAB Function block. The recommended settings are

• ProductMode property of the FIMATH specification: 'FullPrecision'

• SumMode property of the FIMATH specification: 'FullPrecision'

• Treat inherited integer signals as option: Fixed-point

Configure the options as follows:

1 If it is not already open, open the eml_hdl_incrementer model that you
created in “Adding an Embedded MATLAB Function Block to the Model”
on page 9-10.

2 Double-click the Embedded MATLAB Function block to open it for editing.
The Embedded MATLAB Editor appears.

9-11

9 Generating HDL Code with the Embedded MATLAB Function Block

3 Select Edit Data/Ports from the Tools menu. The Ports and Data Manager
dialog box opens, displaying the default FIMATH specification and other
properties for the Embedded MATLAB Function block.

4 Replace the default FIMATH for fixed-point signals specification with
the following:

fimath(...

'RoundMode', 'floor',...

'OverflowMode', 'wrap',...

'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...

'SumMode', 'FullPrecision', 'SumWordLength', 32,...

'CastBeforeSum', true)

5 Set the Treat inherited integer signals as option to Fixed-point.

9-12

Tutorial Example: Incrementer

6 Click Apply. The Embedded MATLAB Function block properties should
now appear as shown in the following figure.

7 Close the Ports and Data Manager dialog box.

8 Save the model.

Programming the Embedded MATLAB Function
The next step is add code to the Embedded MATLAB Function block to define
the incrementer function, and then use MATLAB diagnostics to check for
errors.

Use the following steps to program the function:

9-13

9 Generating HDL Code with the Embedded MATLAB Function Block

1 If not already open, open the eml_hdl_incrementer model that you created
in “Adding an Embedded MATLAB Function Block to the Model” on page
9-10.

2 Double-click the Embedded MATLAB Function block to open it for editing.
The Embedded MATLAB Editor appears. The editor displays a default
function definition, as shown in the following figure.

The next step is to replace the replace the default function with the
incrementer function.

3 Click Select All in the Edit menu of the Embedded MATLAB Editor
window. Then, delete all the default code.

4 Copy the complete incrementer function definition from the listing given
in “The Incrementer Function Code” on page 9-7, and paste it into the
Embedded MATLAB Editor.

The Embedded MATLAB Editor should appear as shown in the following
figure:

9-14

Tutorial Example: Incrementer

5 Select Save Model from the File menu in the Embedded MATLAB Editor.

Saving the model updates the Simulink window, redrawing the Embedded
MATLAB Function block.

9-15

9 Generating HDL Code with the Embedded MATLAB Function Block

Changing the function header of the Embedded MATLAB Function block
makes the following changes to the Embedded MATLAB Function block in
the Simulink model:

• The function name in the middle of the block changes to incrementer

• The arguments ctr_preset and ctr_preset_val appear as input ports
to the block.

• The return value counter appears as an output port from the block.

6 Resize the block to make the port labels more legible. The model should
now resemble the following figure.

7 Save the model again.

Constructing and Connecting the DUT_eML_Block
Subsystem
This section assumes that you have completed “Programming the Embedded
MATLAB Function” on page 9-13 with a successful build. In this section, you
construct a subsystem containing the incrementer function block, to be used
as the device under test (DUT) from which HDL code is generated. You then
set the port data types and connect the subsystem ports to the model.

9-16

Tutorial Example: Incrementer

Constructing the DUT_eML_Block Subsystem
Construct a subsystem containing the incrementer function block as follows:

1 Click on the incrementer function block.

2 From the Simulink Edit menu, select Create Subsystem.

A subsystem, labeled Subsystem, is created in the model window.

3 Change the Subsystem label to DUT_eML_Block.

Setting Port Data Types for the Embedded MATLAB Function
block

1 Double-click the subsystem to view its interior. As shown in the following
figure, the subsystem contains the incrementer function block, with input
and output ports connected.

2 Double-click the incrementer function block, to open the Embedded
MATLAB Editor. In the editor window, select Edit Data Ports from the
Tools menu. The Ports and Data Manager dialog box opens.

9-17

9 Generating HDL Code with the Embedded MATLAB Function Block

3 Select the ctr_preset entry in the port list on the left. Set the Data type
mode property for this port to Built-in. Set the Data type property
to boolean. Click Apply.

4 Select the ctr_preset_val entry in the port list on the left. Set the Data
type mode property for this port to Fixed point. Set the Word length
property to 14. Click Apply.

5 Select the counter entry in the port list on the left. Verify that the Data
type mode property for this port is set to Inherited. Click Apply.

The Ports and Data Manager dialog box should now appear as shown in
the following figure.

9-18

Tutorial Example: Incrementer

6 Close the Ports and Data Manager dialog box and the Embedded MATLAB
Editor.

7 Save the model and close the DUT_eML_Block subsystem.

Connecting Subsystem Ports to the Model
Next, connect the ports of the DUT_eML_Block subsystem to the model as
follows:

1 From the Simulink Sources library, add a Constant block to the model.
Set the value of the Constant to 1, and the Output data type mode to
boolean. Change the block label to Preset.

2 Make a copy of the Preset Constant block. Set its value to 0, and change
its block label to Increment.

9-19

9 Generating HDL Code with the Embedded MATLAB Function Block

3 Add a Switch block to the model. Change its label to Control. Connect its
output to the In1 port of the DUT_eML_Block subsystem.

4 From the Simulink Signal Routing library, add a Manual Switch block to
the model. Change its label to Control. Connect its output to the In1 port
of the DUT_eML_Block subsystem.

5 Connect the Preset Constant block to the upper input of the Control
switch block. Connect the Increment Constant block to the lower input of
the Control switch block.

6 Add a third Constant block to the model. Set the value of the Constant to
15, and the Output data type mode to Inherit via back propagation.
Change the block label to Preset Value.

Connect the Preset Value constant block to the In2 port of the
DUT_eML_Block subsystem.

7 From the Simulink Sinks library, add a Display block to the model. Connect
it to the Out1 port of the DUT_eML_Block subsystem.

8 From the Simulink Sinks library, add a To Workspace block to the model.
Route the output signal from the DUT_eML_Block subsystem to the To
Workspace block.

9 Save the model.

Checking the Embedded MATLAB Function for Errors
Use the built-in diagnostics of Embedded MATLAB Function blocks to test for
syntax errors with the following procedure:

1 If it is not already open, open the eml_hdl_incrementer model.

2 Double-click the Embedded MATLAB Function block incrementer to open
it for editing.

3 In the Embedded MATLAB Editor, select Build from the Tools menu (or
press CTRL+B) to compile and build the Embedded MATLAB code.

9-20

Tutorial Example: Incrementer

The build process displays some progress messages. These messages will
include some warnings, because the ports of the Embedded MATLAB Function
block are not yet connected to any signals. You can ignore these warnings.

The build process builds a C-MEX S-function for use in simulation. The build
process includes generation of C code for the S-function. The code generation
messages you see during the build process refer to generation of C code, not to
HDL code generation.

When the build concludes successfully, a message window is displayed.

If errors are found, the Diagnostics Manager window lists them. See “Using
the Embedded MATLAB Function Block” in the Simulink documentation for
information on debugging Embedded MATLAB Function block build errors.

9-21

9 Generating HDL Code with the Embedded MATLAB Function Block

Compiling the Model and Displaying Port Data Types
In this section you enable the display of port data types and then compile the
model. Model compilation verifies that the model structure and settings are
correct, and update the model display.

1 From the Simulink Format menu, selectPort/Signal Displays > Port
Data Types.

2 From the Simulink Edit menu, select Update Diagram (or press Ctrl+D)
to compile the model. This triggers a rebuild of the embedded MATLAB
code. After the model compiles, the block diagram updates to show the port
data types. The model should now appear as shown in the following figure.

3 Save the model.

Simulating the eml_hdl_incrementer Model
Click the Start Simulation icon to run a simulation.

If necessary, Simulink rebuilds the Embedded MATLAB code before the
simulation starts.

After the simulation completes, the Display block shows the final output value
returned by the incrementer function block. For example, given a Start time

9-22

Tutorial Example: Incrementer

of 0, a Stop time of 5, and a zero value presented at the ctr_preset port, the
simulation returns a value of 6, as shown in the following figure.

You may want to experiment with the results of toggling the Control switch,
changing the Preset Value constant, and changing the total simulation time.
You may also want to examine the workspace variable simout, which is bound
to the To Workspace block.

Generating HDL Code
In this section, you select the DUT_eML_Block subsystem for HDL code
generation, set basic code generation options, and then generate VHDL code
for the subsystem.

Selecting the Subsystem for Code Generation
Select the DUT_eML_Block subsystem for code generation, as follows:

1 Open the Configuration Parameters dialog box. Click the HDL Coder
category in the Select tree in the left pane of the dialog box.

2 Select eml_hdl_incrementer/DUT_eML_Block from the Generate HDL
for menu.

9-23

9 Generating HDL Code with the Embedded MATLAB Function Block

3 Click Apply. The dialog box should now appear as shown in the following
figure.

Generating VHDL Code
The top-level HDL Coder options should now be set as follows:

• The Generate HDL for field specifies the
eml_hdl_incrementer/DUT_eML_Block subsystem for code
generation.

• The Language field specifies (by default) generation of VHDL code.

• The Directory field specifies (by default) that the code generation target
directory is a subdirectory of your working directory, named hdlsrc.

Before generating code, select Current Directory from the Desktop menu
in the MATLAB window. This displays the MATLAB Current Directory
browser, which lets you easily access your working directory and the files
that are generated within it.

To generate code:

9-24

Tutorial Example: Incrementer

1 Click the Generate button.

Simulink HDL Coder compiles the model before generating code.
Depending on model display options (for example, sample time colors,
port data types, etc.), the appearance of the model may change after code
generation.

2 Simulink HDL Coder generates code and displays progress messages. The
process should complete successfully with the message

Applying HDL Code Generation Control Statements

Begin VHDL Code Generation

Working on eml_hdl_incrementer/DUT_eML_Block as hdlsrc\DUT_eML_Block.vhd

Working on eml_hdl_incrementer/DUT_eML_Block/eml_inc_blk as hdlsrc\eml_inc_blk.vhd

Embedded MATLAB parsing for model "eml_hdl_incrementer"...Done

Embedded MATLAB code generation for model "eml_hdl_incrementer"....Done

HDL Code Generation Complete.

Observe that the names of generated VHDL files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB editor.

3 A folder icon for the hdlsrc directory is now visible in the Current
Directory browser. To view generated code and script files, double-click
the hdlsrc folder icon.

4 Observe that two VHDL files were generated. The structure of HDL
code generated for Embedded MATLAB Function blocks is similar to the
structure of code generated for Stateflow charts and Digital Filter blocks.
The VHDL files that were generated in the hdlsrc directory are

• eml_inc_blk.vhd: VHDL code. This file contains entity and architecture
code implementing the actual computations generated for the Embedded
MATLAB Function block.

• DUT_eML_Block.vhd: VHDL code. This file contains an entity definition
and RTL architecture that provide a black box interface to the code
generated in Embedded_MATLAB_Function.vhd.

9-25

9 Generating HDL Code with the Embedded MATLAB Function Block

The structure of these code files is analogous to the structure of the model,
in which the DUT_eML_Block subsystem provides an interface between
the root model and the incrementer function in the Embedded MATLAB
Function block.

The other files that were generated in the hdlsrc directory are

• DUT_eML_Block_compile.do: ModelSim compilation script (vcom
command) to compile the VHDL code in the two .vhd files.

• DUT_eML_Block_synplify.tcl: Synplify synthesis script.

• DUT_eML_Block_map.txt: Mapping file. This report file maps generated
entities (or modules) to the Simulink subsystems that generated them
(see “Code Tracing Using the Mapping File” on page 6-5).

5 To view the generated VHDL code in the MATLAB editor, double-click
the DUT_eML_Block.vhd or eml_inc_blk.vhd file icons in the Current
Directory browser.

At this point you should study the ENTITY and ARCHITECTURE definitions
while referring to “HDL Code Generation Defaults” on page 13-13 in the
makehdl reference documentation. The reference documentation describes
the default naming conventions and correspondences between the elements
of a Simulink model (subsystems, ports, signals, etc.) and elements of
generated HDL code.

9-26

Useful Embedded MATLAB Design Patterns for HDL

Useful Embedded MATLAB Design Patterns for HDL
The following sections describe several design patterns that help you use
advanced Embedded MATLAB features:

• “The eml_hdl_design_patterns Library” on page 9-27

• “Efficient Fixed-Point Algorithms” on page 9-29

• “Fixed Point Bitwise Operators” on page 9-33

• “Using Persistent Variables to Model State” on page 9-35

• “Creating Intellectual Property with the Embedded MATLAB Function
Block” on page 9-37

• “Modeling Control Logic and Simple Finite State Machines ” on page 9-38

• “Modeling Counters” on page 9-40

• “Modeling Hardware Elements” on page 9-41

The eml_hdl_design_patterns Library
The eml_hdl_design_patterns library is an extensive collection of examples
demonstrating useful applications of the Embedded MATLAB Function block
in HDL code generation. The following figure shows the library.

9-27

9 Generating HDL Code with the Embedded MATLAB Function Block

The location of the library in the MATLAB directory structure is

MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\eml_hdl_design_patterns.mdl

Refer to example models in the eml_hdl_design_patterns library while
reading the following sections. To open the library, type the following
command at the MATLAB command prompt:

eml_hdl_design_patterns

You can use many blocks in the library as cookbook examples of various
hardware elements, as follows:

9-28

Useful Embedded MATLAB Design Patterns for HDL

• Copy a block from the library to your model and use it as a computational
unit, (generating code in a separate HDL file).

• Copy the code from the block and use it as a subfunction in an existing
Embedded MATLAB Function block (generating inline HDL code).

Efficient Fixed-Point Algorithms
The Embedded MATLAB Function block supports fixed point arithmetic
using the Fixed Point Toolbox fi function. This function supports several
rounding and saturation modes that are useful for coding algorithms that
manipulate arbitrary word and fraction lengths in Embedded MATLAB.
Supported rounding modes are ceil, fix, floor, and nearest. Supported
overflow modes are saturate and wrap.

HDL code generated from the Embedded MATLAB Function block is bit-true
to MATLAB semantics. Generated code uses bit manipulation and bit access
operators (e.g., Slice, Extend, Reduce, Concat, etc.) that are native to VHDL
and Verilog.

The following discussion shows how HDL code generated from the Embedded
MATLAB Function block follows cast-before-sum semantics, in which addition
and subtraction operands are cast to the result type before the addition
or subtraction is performed.

Open the eml_hdl_design_patterns library and select the
Combinatrics/eml_expr block. eml_expr implements a simple expression
containing addition, subtraction, and multiplication operators with differing
fixed point data types. The generated HDL code shows the conversion of
this expression with fixed point operands. The following listing shows the
MATLAB code embedded in the block.

% fixpt arithmetic expression
expr = (a*b) - (a+b);

% cast the result to (sfix7_En4) output type
y = fi(expr, 1, 7, 4);

The default fimath specification for the block determines the behavior of
arithmetic expressions using fixed point operands inside the Embedded
MATLAB Function block:

9-29

9 Generating HDL Code with the Embedded MATLAB Function Block

fimath(...
'RoundMode', 'ceil',...
'OverflowMode', 'saturate',...
'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...
'SumMode', 'FullPrecision', 'SumWordLength', 32,...
'CastBeforeSum', true)

The data types of operands and output are as follows:

• a: (sfix5_En2)

• b: (sfix5_En3)

• y: (sfix7_En4).

Before HDL Code generation, the operation

expr = (a*b) - (a+b);

is broken down internally into the following substeps:

1 tmul = a * b;

2 tadd = a + b;

3 tsub = tmul - tadd;

4 y = tsub;

Based on the fimath settings (see “Recommended Practices” on page 9-43)
this expression is further broken down internally as follows:

• Based on the specified ProductMode, 'FullPrecision', the output type of
tmul is computed as (sfix10_En5).

• Since the CastBeforeSum property is set to 'true', substep 2 is broken
down as follows:

t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;

9-30

Useful Embedded MATLAB Design Patterns for HDL

sfix7_En3 is the result sum type after aligning binary points and
accounting for an extra bit to account for possible overflow.

• Based on intermediate types of tmul (sfix10_En5) and tadd (sfix7_En3)
the result type of the subtraction in substep 3 is computed as sfix11_En5.
Accordingly, substep 3 is broken down as follows:

t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;

• Finally the result is cast to a smaller type (sfix7_En4) leading to the
following final expression statements:

tmul = a * b;
t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;
t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;
y = (sfix7_En4) tsub;

The following listings show the generated VHDL and Verilog code from the
eml_expr block.

Note Some comments have been added manually to the generated code.

VHDL code excerpt:

-- fixpt arithmetic expression

--CastBeforeSum using Slice and extend operators

b_ain := resize(signed(a & '0'), 7);

b_bin := resize(signed(b), 7);

b_ain_0 := b_ain + b_bin;

a_0 := signed(a) * signed(b);

9-31

9 Generating HDL Code with the Embedded MATLAB Function Block

ain := resize(a_0, 11);

bin := resize(signed(b_ain_0 & '0' & '0'), 11);

expr := ain - bin;

--Cast the result to the output type

IF ((expr(10) = '0') AND (expr(9 DOWNTO 7) /= "000")) OR --Saturation Condition

((expr(10) = '0') AND (expr(7 DOWNTO 1) = "0111111")) THEN

y <= "0111111";

ELSIF (expr(10) = '1') AND (expr(9 DOWNTO 7) /= "111") THEN

y <= "1000000";

ELSE

y <= std_logic_vector(signed(expr(7 DOWNTO 1)) + ("0" & (expr(0)))); -- rounding

END IF;

Verilog code excerpt:

// fixpt arithmetic expression

b_ain = {a[4], {a, 1'b0}};

b_bin = b;

a_0 = a * b;

ain = a_0;

b_ain_0 = b_ain + b_bin;

bin = {{2{b_ain_0[6]}}, {b_ain_0, 2'b00}};

expr = ain - bin;

// cast the result to correct output type

if (((expr[10] == 0) && (expr[9:7] != 0)) ||

((expr[10] == 0) && (expr[7:1] == 63)))

y = 63;

else if ((expr[10] == 1) && (expr[9:7] != 7))

y = -64;

else

y = expr[7:1] + ({6'b0, expr[0]});

These code excerpts show that the generated HDL code from the Embedded
MATLAB Function block represents the bit-true behavior of fixed point
arithmetic expressions using high level HDL operators. The HDL code is

9-32

Useful Embedded MATLAB Design Patterns for HDL

generated using HDL coding rules like high level bitselect and partselect
replication operators and explicit sign extension and resize operators.

Fixed Point Bitwise Operators
Embedded MATLAB supports many bitwise operators that operate on
arbitrary length fixed point integers. These operators provide a high level
of abstraction for writing HDL algorithms without losing the ability to
manipulate bits.

For HDL code generation from Embedded MATLAB code, all standard fixed
point bitwise operators are supported. These operators generate efficient
HDL code. For example, the bitget operation generates the slice operator
in HDL. You can use bitshift with a positive shift index to shift left
(multiplication by 2) or a negative shift index to shift right (division by 2).

Simulink HDL Coder always performs arithmetic shift right for signed input
operands.

In the eml_hdl_design_patterns library, the Bit Twiddlers/hdl_bit_ops
block illustrates how to use these functions for various bit manipulation
operations. The following VHDL code was generated from the hdl_bit_ops
block.

-- BITGET

-- get bit at position 2 of fixed point input var 'a'

-- (using 0-based VHDL/Verilog indexing)

-- this uses slice operator in HDL

bget <= std_logic_vector(tmw_to_unsigned(a(1), 8));

-- BITCLEAR

-- clear bit at position 3 and compute new value into 't2'

b_mask := to_unsigned(1, 31) sll 2;

t2 := unsigned(a) AND (NOT b_mask);

-- BITSET

-- now set bit4 in t2

-- you need to assign the result back to 't2'

-- to update the variable

mask := to_unsigned(1, 31) sll 3;

9-33

9 Generating HDL Code with the Embedded MATLAB Function Block

bset <= std_logic_vector(t2 OR mask);

-- BITCMP

d_c_r := NOT unsigned(a);

bcmp <= std_logic_vector(d_c_r);

-- BITAND

f_c_uint := unsigned(a) AND unsigned(b);

band <= std_logic_vector(f_c_uint);

-- BITOR

e_c_uint := unsigned(a) OR unsigned(b);

bor <= std_logic_vector(e_c_uint);

-- BITXOR

d_c_uint := unsigned(a) XOR unsigned(b);

bxor <= std_logic_vector(d_c_uint);

-- BITNAND

c_c_uint := unsigned(a) AND unsigned(b);

c_c_r := NOT c_c_uint;

bnand <= std_logic_vector(c_c_r);

-- BITNOR

b_c_uint := unsigned(a) OR unsigned(b);

b_c_r := NOT b_c_uint;

bnor <= std_logic_vector(b_c_r);

-- NOT BITXOR

c_uint := unsigned(a) XOR unsigned(b);

c_r := NOT c_uint;

bnxor <= std_logic_vector(c_r);

-- BITSHIFT

-- multitply by 2

b_cr := unsigned(a) sll 1;

blshift <= std_logic_vector(b_cr);

-- divide by 2

cr := SHIFT_RIGHT(unsigned(a), 1);

9-34

Useful Embedded MATLAB Design Patterns for HDL

brshift <= std_logic_vector(cr);

The Bit Twiddlers/signal_distance block demonstrates another
application of bitwise operators. This block computes the Hamming distance
between the two fixed point input operands. The Embedded MATLAB code is
shown in the following listing.

function y = hamming_distance(u, v)

% get all bits of u

t1 = bitget(u, 5:-1:1);

% get all bits of v in reverse order

t2 = bitget(v, 1:1:5);

% xor the bits

t3 = xor(t1, t2);

% find number of bits that are equal to 1

y = sum(t3);

Using Persistent Variables to Model State
To model complex control logic, the ability to model registers is a basic
requirement. In the Embedded MATLAB programming model, state-holding
elements are represented as persistent variables. A variable that is declared
persistent retains its value across function calls in software, and across
sample time steps in Simulink. State holding elements in hardware also
require this behavior. Similarly, state-holding elements should retain their
values across clock sample times. The values of persistent variables can also
be changed using global and local reset conditions.

The subsystem Delays in the eml_hdl_design_patterns library illustrates
how persistent variables can be used to simulate various kinds of delay blocks
in Simulink.

The eML Unit Delay block delays the input sample by one Simulink
simulation time step. A persistent variable is used to hold the value, as shown
in the following code listing:

9-35

9 Generating HDL Code with the Embedded MATLAB Function Block

function y = fcn(u)

persistent u_d;

if isempty(u_d)

u_d = fi(-1, numerictype(u), fimath(u));

end

% return delayed input from last sample time hit

y = u_d;

% store the current input to be used later

u_d = u;

In this example, u is a fixed point operand of type sfix5. In the generated
HDL code, initialization of persistent variables is moved into the master reset
region in the initialization process as follows.

ENTITY eML_Unit_Delay IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

u : IN std_logic_vector(4 DOWNTO 0);

y : OUT std_logic_vector(4 DOWNTO 0));

END eML_Unit_Delay;

ARCHITECTURE fsm_SFHDL OF eML_Unit_Delay IS

SIGNAL u_d : signed(4 DOWNTO 0);

SIGNAL u_d_next : signed(4 DOWNTO 0);

BEGIN

initialize_eML_Unit_Delay : PROCESS (reset, clk)

-- local variables

BEGIN

IF reset = '1' THEN

u_d <= to_signed(-1, 5);

ELSIF clk'EVENT AND clk= '1' THEN

IF clk_enable= '1' THEN

9-36

Useful Embedded MATLAB Design Patterns for HDL

u_d <= u_d_next;

END IF;

END IF;

END PROCESS initialize_eML_Unit_Delay;

Refer to the Delays subsystem to see how vectors of persistent variables
can be used to model Integer Delay, Tapped Delay, and Tapped Delay
Vector blocks. These design patterns are useful in implementing sequential
algorithms that carry state between invocations of the Embedded MATLAB
block in a Simulink model.

Creating Intellectual Property with the Embedded
MATLAB Function Block
The Embedded MATLAB Function block lets you quickly author intellectual
property (IP). It also lets you rapidly create alternate implementations of a
part of an algorithm.

For example, the subsystem Comparators in the eml_hdl_design_patterns
library includes several alternate algorithms for finding the minimum value
of a vector. The Comparators/eml_linear_min block finds the minimum of
the vector in a linear mode serially. The Comparators/eml_tree_min block
compares the elements in a tree structure. The tree implementation can
achieve a higher clock frequency by adding pipeline registers between the
log2(N) stages. (See eml_hdl_design_patterns/Filters for an example.)

Now consider replacing the simple comparison operation in the Comparators
blocks with an arithmetic operation (e.g., addition, subtraction, or
multiplication) where intermediate results must be quantized. Using fimath
rounding settings, you can fine tune intermediate value computations before
intermediate values feed into the next stage. This can be a powerful technique
for tuning the generated hardware or customizing your algorithm.

By using Embedded MATLAB Function blocks in this way, you can guide the
detailed operation of the HDL code generator even while writing high-level
algorithms.

9-37

9 Generating HDL Code with the Embedded MATLAB Function Block

Modeling Control Logic and Simple Finite State
Machines
Embedded MATLAB control constructs such as switch/case and
if-elseif-else, coupled with fixed point arithmetic operations, let you
model control logic quickly.

The FSMs/mealy_fsm_blk andFSMs/moore_fsm_blk blocks in the
eml_hdl_design_patterns library provide example implementations of
Mealy and Moore finite state machines in Embedded MATLAB.

The following listing implements a Moore state machine.

function Z = moore_fsm(A)

persistent moore_state_reg;

if isempty(moore_state_reg)

moore_state_reg = fi(0, 0, 2, 0);

end

S1 = 0;

S2 = 1;

S3 = 2;

S4 = 3;

switch uint8(moore_state_reg)

case S1,

Z = true;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S2;

end

case S2,

Z = false;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S2;

9-38

Useful Embedded MATLAB Design Patterns for HDL

end

case S3,

Z = false;

if (~A)

moore_state_reg(1) = S2;

else

moore_state_reg(1) = S3;

end

case S4,

Z = true;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S3;

end

otherwise,

Z = false;

end

In this example, a persistent variable (moore_state_reg) models state
variables. The output depends only on the state variables, thus modeling a
Moore machine.

The FSMs/mealy_fsm_blk block in the eml_hdl_design_patterns library
implements a Mealy state machine. A Mealy state machine differs from a
Moore state machine in that the outputs depend on inputs as well as state
variables.

Simple state machines and other control-based hardware algorithms, such
as pattern matchers, or synchronization-related controllers, can be quickly
modeled using control statements and persistent variables in Embedded
MATLAB.

For modeling more complex and hierarchical state machines with complicated
temporal logic, use Stateflow to model the state machine.

9-39

9 Generating HDL Code with the Embedded MATLAB Function Block

Modeling Counters
To implement arithmetic and control logic algorithms in Embedded MATLAB
Function blocks intended for HDL code generation, there are some simple
HDL related coding requirements:

• The top level Embedded MATLAB Function block must be called once per
time step.

• It must be possible to fully unroll program loops.

• Persistent variables with proper reset values and update logic must be
used to hold values across Simulink time steps.

• Quantized data variables must be used inside loops.

The following script shows how to model a synchronous up/down counter
with preset values and control inputs. The example provides both master
reset control of persistent state variables and local reset control using block
inputs (e.g. presetClear). The isempty condition enters the initialization
process under the control of a synchronous reset. The presetClear section is
implemented in the output section in the generated HDL code.

Both the up and down case statements implementing the count loop require
that the values of the counter are quantized after addition or subtraction. By
default, Embedded MATLAB automatically propagates fixed-point settings
specified for the block. In this script, however, fixed-point settings for
intermediate quantities and constants are explicitly specified.

function [Q, QN] = up_down_ctr(upDown, presetClear, loadData, presetData)

% up down result

% 'result' syntheses into sequential element

result_nt = numerictype(0,4,0);

result_fm = fimath('OverflowMode', 'saturate', 'RoundMode', 'floor');

initVal = fi(0, result_nt, result_fm);

persistent count;

if isempty(count)

count = initVal;

9-40

Useful Embedded MATLAB Design Patterns for HDL

end

if presetClear

count = initVal;

elseif loadData

count = presetData;

elseif upDown

inc = count + fi(1, result_nt, result_fm);

-- quantization of output

count = fi(inc, result_nt, result_fm);

else

dec = count - fi(1, result_nt, result_fm);

-- quantization of output

count = fi(dec, result_nt, result_fm);

end

Q = count;

QN = bitcmp(count);

Modeling Hardware Elements
The following code example shows how to model shift registers in Embedded
MATLAB by using the bitshift function. This function implements a serial
input and output shifters with a 32–bit fixed-point operand input. See the
Shift Registers/1by32_shift_reg block in the eml_hdl_design_patterns
library for more details.

function sr_out = fcn(shift, sr_in)

persistent sr;

if isempty(sr)

sr = fi(0, 0, 32, 0);

end

if (shift)

% sr[31:1] = sr[30:0]

sr = bitshift(sr, 1);

% sr[0] = sr_in

sr = bitset(sr, 1, int8(sr_in));

end

9-41

9 Generating HDL Code with the Embedded MATLAB Function Block

% return sr[31]

sr_out = fi(bitget(sr, 32), 0, 1, 0);

The Shift Registers/1by64_shift_reg block shows a 64 bit shifter. In
this case, the shifter uses two fixed point words, to represent the operand,
overcoming the 32–bit word length limitation for fixed-point integers.

Browse the eml_hdl_incrementer model for other useful hardware elements
that can be easily implemented using Embedded MATLAB.

9-42

Recommended Practices

Recommended Practices
This section describes recommended practices when using the Embedded
MATLAB Function block for HDL code generation.

• “Build the Embedded MATLAB Code First” on page 9-43

• “Use Optimal FIMATH Settings” on page 9-43

• “Use Optimal Fixed Point Option Settings” on page 9-44

Note The MathWorks strongly recommends that you set Embedded
MATLAB Function block options as described in this section. By using these
settings, you can significantly increase the efficiency of generated HDL
code. See “Setting Optimal Fixed Point Options for the Embedded MATLAB
Function Block” on page 9-11 for an example.

Build the Embedded MATLAB Code First
Before generating HDL code for a subsystem containing an Embedded
MATLAB Function block, it is strongly recommended that you build the
Embedded MATLAB code to check for errors. To build the code, select Build
from the Tools menu in the Embedded MATLAB editor (or press CTRL+B) .

Use Optimal FIMATH Settings
Use the default FIMATH specification, but change the following properties:

• ProductMode property of the FIMATH specification: set to 'FullPrecision'

• SumMode property of the FIMATH specification: set to 'FullPrecision'

The following listing shows the resultant FIMATH setting.

fimath(...

'RoundMode', 'floor',...

'OverflowMode', 'wrap',...

'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...

'SumMode', 'FullPrecision', 'SumWordLength', 32,...

'CastBeforeSum', true)

9-43

9 Generating HDL Code with the Embedded MATLAB Function Block

Note When the FIMATH OverflowMode property of the FIMATH specification
is set to 'Saturate', HDL code generation is disallowed for the following
cases:

• SumMode is set to 'SpecifyPrecision'

• ProductMode is set to 'SpecifyPrecision'

Use Optimal Fixed Point Option Settings
Set the Treat inherited integer signals as option to Fixed-point, as
shown in the following figure.

9-44

Language Support

Language Support
This section discusses the following topics:

• “Fixed-Point Embedded MATLAB Runtime Library Support” on page 9-45

• “Variables and Constants” on page 9-46

• “Arithmetic Operators” on page 9-49

• “Relational Operators” on page 9-50

• “Logical Operators” on page 9-51

• “Control Flow Statements” on page 9-51

Fixed-Point Embedded MATLAB Runtime Library
Support
When generating code for the Embedded MATLAB Function block, Simulink
HDL Coder supports most of the fixed-point runtime library functions
supported by Embedded MATLAB. For a complete list of these functions, see
“Supported Functions and Limitations of Fixed-Point Embedded MATLAB” in
the Fixed Point Toolbox documentation.

Some functions are not supported, or are subject to some restrictions. These
functions are summarized in the following table.

Function Restriction Notes

complex Not supported Complex data types are
not supported in this
release.

conj Not supported Complex data types are
not supported in this
release.

ctranspose Not supported Complex data types are
not supported in this
release.

disp Not supported

9-45

9 Generating HDL Code with the Embedded MATLAB Function Block

Function Restriction Notes

get Not supported This function returns a
struct. Struct data types
are not supported in this
release.

imag Not supported Complex data types are
not supported in this
release.

pow2 Not supported

real Not supported

divide Supported, with
restrictions

The divisor must be a
constant and a power of
two.

fi Supported, with
restrictions

Only the following
rounding modes are
supported: ceil, fix,
floor, nearest.

fimath Supported, with
restrictions

Only the following
rounding modes are
supported: ceil, fix,
floor, nearest.

subsasgn Supported, with
restrictions

Subscripted assignment
supported; see “Data Type
Usage” on page 9-47

subsref Supported, with
restrictions

Subscripted reference
supported; see “Data Type
Usage” on page 9-47

Variables and Constants
This section summarizes supported data types and typing rules for variable
and constants, and the use of persistent variables in modeling registers.

9-46

Language Support

Data Type Usage
When generating code for the Embedded MATLAB Function block, Simulink
HDL Coder supports a subset of MATLAB data types. The following table
summarizes supported and unsupported data types.

Type(s) Support Notes

Integer Supported:

• uint8, uint16, uint32,

• int8, int16, int32

Real Supported:

• double

• single

HDL code generated with double
or single data types is not
synthesizable.

Character Supported:
char

Logical Supported:

Boolean

Fixed point Supported:

• Scaled (binary point only) fixed
point numbers

• Custom integers (zero binary
point)

Fixed point numbers with slope (not
equal to 1.0) and bias (not equal to
0.0) are not supported.

Maximum word size for fixed-point
numbers is 32 bits.

The convergent and matlab rounding
modes are not currently supported.
Do not specify these modes in fimath
in specifications.

Vectors Supported:

• unordered {N}

• row {1, N}

• column {N, 1}

The maximum number of vector
elements allowed is 2^32.

Embedded MATLAB requires a
variable to be fully defined before it
is subscripted.

9-47

9 Generating HDL Code with the Embedded MATLAB Function Block

Type(s) Support Notes

Matrix N/A Matrices are not supported in the
current release.

Complex N/A Complex data types are not supported
in the current release.

Struct N/A Struct data types are not supported in
the current release.

Cell arrays N/A Cell arrays are not supported in the
current release.

Typing Ports, Variables and Constants
Strong typing rules are applied to Embedded MATLAB Function blocks, as
follows:

• All input and output port data types must be resolved at model compilation
time.

- If the data type of an input port is unspecified when the model is
compiled, the port is assigned the data type of the signal driving the port.

- If the data type of an output port is unspecified when the model
is compiled, the output port type is type is determined by the first
assignment to the output variable.

• Similarly, all constant literals are strongly typed. If you do not specify
the data type of a constant explicitly, its type is determined by internal
rules. To specify the data type of a constant, use cast functions (e.g., uint8,
uint16, etc.) or fi functions using fimath specifications.

• After you have defined a variable, do not change its data type. Variable
types cannot be changed dynamically by assigning a different value as in
MATLAB. Dynamic typing will lead to a compile time error.

• After you have defined a variable, do not change its size. Variables cannot
be grown or resized dynamically.

• Do not use output variables to model registered output; in Embedded
MATLAB, outputs are never persistent. Use persistent variables for this
purpose, as described in “Persistent Variables” on page 9-49.

9-48

Language Support

Persistent Variables
Persistent variables let you model registers. If you need to preserve state
between invocations of an Embedded MATLAB Function block, use persistent
variables.

Each persistent variable must be initialized with a statement specifying its
size and type before it is referenced. The correct way to initialize a persistent
variable for use in HDL code generation is to directly initialize it with a
constant value, as in the following example:

persistent p;
if isempty(p)

p = fi(0,0,8,0);
end

See also “The Incrementer Function Code” on page 9-7 for an example of the
initialization and use of a persistent variable.

Note If persistent variables are not initialized properly, unnecessary
sentinel variables can appear in the generated code.

Arithmetic Operators
When generating code for the Embedded MATLAB Function block, Simulink
HDL Coder supports the arithmetic operators (and their M function
equivalents) listed in the following table.

Operation Operator Syntax M Function Equivalent Fixed Point
Support?

Binary addition A+B plus(A,B) Y

Matrix Multiplication A*B mtimes(A,B) Y

Arraywise multiplication A.*B times(A,B) Y

Matrix right division A/B mrdivide(A,B) Y

Arraywise right division A./B rdivide(A,B) Y

Matrix left division A\B mldivide(A,B) Y

9-49

9 Generating HDL Code with the Embedded MATLAB Function Block

Operation Operator Syntax M Function Equivalent Fixed Point
Support?

Arraywise left division A.\B ldivide(A,B) Y

Matrix power A^B mpower(A,B) Y

Arraywise power A.^B power(A,B) Y

Complex transpose A' ctranspose(A) Y

Matrix transpose A.' transpose(A) Y

Matrix concat [A B] None Y

Matrix index
Note: Embedded
MATLAB requires a
variable to be fully
defined before it is
subscripted.

A(r c) None Y.

Relational Operators
When generating code for the Embedded MATLAB Function block, Simulink
HDL Coder supports the relational operators (and their M function
equivalents) listed in the following table.

Relation Operator
Syntax

M
Function
Equivalent

Fixed Point Support?

Less than A<B lt(A,B) Y

Less than or equal to A<=B le(A,B) Y

Greater than or
equal to

A>=B ge(A,B) Y

Greater than A>B gt(A,B) Y

Equal A==B eq(A,B) Y

Not Equal A~=B ne(A,B) Y

9-50

Language Support

Logical Operators
When generating code for the Embedded MATLAB Function block, Simulink
HDL Coder supports the logical operators (and their M function equivalents)
listed in the following table.

Relation Operator
Syntax

M Function
Equivalent

Fixed
Point
Support?

Notes

Logical And A&B and(A,B) Y

Logical Or A|B or(A,B) Y

Logical Xor A xor B xor(A,B) Y

Logical
And (short
circuiting)

A&&B N/A Y Use short circuiting logical
operators within conditionals.
See also “Control Flow
Statements” on page 9-51.

Logical
Or (short
circuiting)

A||B N/A Y Use short circuiting logical
operators within conditionals.
See also “Control Flow
Statements” on page 9-51.

Element
complement

~A not(A) Y

Control Flow Statements
When generating code for the Embedded MATLAB Function block, Simulink
HDL Coder imposes some restrictions on the use of control flow statements
and constructs. The following table summarizes supported and unsupported
control flow statements.

9-51

9 Generating HDL Code with the Embedded MATLAB Function Block

Control Flow
Statement

Notes

break

continue

return

Do not use these statements within loops. Use of these statements in
a loop causes Simulink HDL Coder to report the following error:

Unstructured flow graph or loop containing

[statement type] not supported for HDL

for

while

while loops and for loops without static bounds are not supported.
Use of while and for loops without static bounds causes Simulink
HDL Coder to report the following error:

Unstructured flow graph or loop containing

[statement type] not supported for HDL

Do not use the & and | operators within conditions of a while or for
statement. Instead, use the && and || operators.

Embedded MATLAB does not support nonscalar expressions in the
conditions of while and for statements. Use the all or any functions
to collapse logical vectors into scalars.

if Do not use the & and | operators within conditions of an if statement.
Instead, use the && and || operators.

Embedded MATLAB does not support nonscalar expressions are not
supported in the conditions of if statements. Use the all or any
functions to collapse logical vectors into scalars.

switch The HDL code matches the behavior of the MATLAB switch
statement; the first matching case statement is executed.

Use only scalars in conditional expressions in a switch statement.

Use of fi variables in switch or case conditionals is not supported.
For HDL code generation, the usage is restricted to uint8, uint16,
uint32, sint8, sint16, and sint32.

If multiple case statements make assignments to the same variable,
then their numeric type and fimath specification should match that
variable.

9-52

Other Limitations

Other Limitations
This section lists other limitations that apply when generating HDL code with
the Embedded MATLAB Function block. These limitations are:

• The HDL compatibility checker (checkhdl) performs only a basic
compatibility check on the Embedded MATLAB Function block. HDL
related warnings or errors may arise during code generation from an
Embedded MATLAB Function block that is otherwise valid for simulation.
Such errors are reported in a separate message window.

• Embedded MATLAB does not support nested functions. Subfunctions are
supported, however. For an example, see “Tutorial Example: Incrementer”
on page 9-5.

• Use of multiple values on the left side of an expression is not supported.
For example, an error results from the following assignment statement:

[t1, t2, t3] = [1, 2, 3];

9-53

9 Generating HDL Code with the Embedded MATLAB Function Block

9-54

10

Generating Scripts for HDL
Simulators and Synthesis
Tools

Overview of Script Generation for
EDA Tools (p. 10-2)

Overview of generation of scripts for
third-party simulation and synthesis
tools

Defaults for Script Generation
(p. 10-3)

Defaults and file naming conventions

Custom Script Generation (p. 10-4) Command line properties and GUI
options for customizing script files

10 Generating Scripts for HDL Simulators and Synthesis Tools

Overview of Script Generation for EDA Tools
Simulink HDL Coder supports generation of script files for third-party
electronic design automation (EDA) tools. These scripts let you compile and
simulate generated HDL code or synthesize generated HDL code.

Using the defaults, you can automatically generate scripts for the following
tools:

• Mentor Graphics ModelSim SE/PE HDL simulator

• The Synplify family of synthesis tools

10-2

Defaults for Script Generation

Defaults for Script Generation
By default, script generation takes place automatically, as part of the code
and test bench generation process.

All script files are generated in the target directory.

When you generate HDL code for a model or subsystem system, Simulink
HDL Coder writes the following script files:

• system_compile.do: ModelSim compilation script. This script contains
commands to compile the generated code, but not to simulate it.

• system_synplify.tcl: Synplify synthesis script

When you generate test bench code for a model or subsystem system,
Simulink HDL Coder writes the following script files:

• system_tb_compile.do: ModelSim compilation script. This script contains
commands to compile the generated code and test bench.

• system_tb_sim.do: ModelSim simulation script. This script contains
commands to run a simulation of the generated code and test bench.

10-3

10 Generating Scripts for HDL Simulators and Synthesis Tools

Custom Script Generation
• “Structure of Generated Script Files” on page 10-4

• “Properties for Controlling Script Generation” on page 10-5

• “Controlling Script Generation with the EDA Tool Scripts GUI Panel” on
page 10-8

You can enable or disable script generation and customize the names and
content of generated script files using either of the following methods:

• Use the makehdl or makehdltb functions, and pass in the appropriate
property name/property value arguments, as described in “Properties for
Controlling Script Generation” on page 10-5.

• Set script generation options in the EDA Tool Scripts pane of the
Simulink HDL Coder GUI, as described in “Controlling Script Generation
with the EDA Tool Scripts GUI Panel” on page 10-8.

Structure of Generated Script Files
A generated EDA script consists of three sections, generated and executed
in the following order:

1 An initialization (Init) phase. The Init phase performs any required
setup actions, such as creating a design library or a project file. Some
arguments to the Init phase are implicit, for example, the top-level entity
or module name.

2 A command-per-file phase (Cmd). This phase of the script is called
iteratively, once per generated HDL file or once per signal. On each call, a
different file or signal name is passed in.

3 A termination phase (Term). This is the final execution phase of the script.
One application of this phase is to execute a simulation of HDL code that
was compiled in the Cmd phase. The Term phase takes no arguments.

Simulink HDL Coder generates scripts by passing format strings to the
MATLAB fprintf function. Using the GUI options (or makehdl and
makehdltb properties) summarized in the following sections, you can pass
in customized format strings to the script generator. Some of these format

10-4

Custom Script Generation

strings take arguments, such as the top-level entity or module name, or the
names of the VHDL or Verilog files in the design.

You can use any legal fprintf formatting characters. For example, '\n'
inserts a newline into the script file.

Properties for Controlling Script Generation
This section describes how to set properties in the makehdl or makehdltb
functions to enable or disable script generation and customize the names
and content of generated script files.

Enabling and Disabling Script Generation
The EDAScriptGeneration property controls the generation of script files. By
default, EDAScriptGeneration is set 'on'. To disable script generation, set
EDAScriptGeneration to 'off', as in the following example.

makehdl('sfir_fixed/symmetric_fir,'EDAScriptGeneration','off')

Customizing Script Names
When you generate HDL code, script names are generated by appending a
postfix string to the model or subsystem name system.

When you generate test bench code , script names are generated by appending
a postfix string to the test bench name testbench_tb.

The postfix string depends on the type of script (compilation, simulation,
or synthesis) being generated. The default postfix strings are shown in the
following table. For each type of script, you can define your own postfix using
the associated property.

Script Type Property Default Value

Compilation 'HDLCompileFilePostfix' '_compile.do'

Simulation 'HDLSimFilePostfix' '_sim.do'

Synthesis 'HDLSynthFilePostfix' '_synplify.tcl'

10-5

10 Generating Scripts for HDL Simulators and Synthesis Tools

The following command generates VHDL code for the subsystem system,
specifying a custom postfix string for the compilation script. The name of the
generated compilation script will be system_test_compilation.do.

makehdl('mymodel/system', 'HDLCompileFilePostfix', '_test_compilation.do')

Customizing Script Code
Using the property name/property value pairs summarized in the following
table, you can pass in customized format strings to makehdl or makehdltb.
The properties are named according to the following conventions:

• Properties that apply to the initialization (Init) phase are identified by the
substring Init in the property name.

• Properties that apply to the command-per-file phase (Cmd) are identified by
the substring Cmd in the property name.

• Properties that apply to the termination (Term) phase are identified by the
substring Term in the property name.

Property Name and Default Description

Name: 'HDLCompileInit'

Default:'vlib work\n'

Format string passed to fprintf to write the Init
section of the compilation script.

Name: 'HDLCompileVHDLCmd'

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
'SimulatorFlags' property and the file name of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: 'HDLCompileVerilogCmd'

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
'SimulatorFlags' property and the file name of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

10-6

Custom Script Generation

Property Name and Default Description

Name:'HDLCompileTerm'

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Name: 'HDLSimInit'

Default:

['onbreak resume\n',...
'onerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.

Name: 'HDLSimCmd'

Default: 'vsim work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.

Name: 'HDLSimViewWaveCmd'

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command.
The implicit argument is the top-level module or
entity name.

Name: 'HDLSimTerm'

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script

Name: 'HDLSynthInit'

Default: 'project -new %s.prj\n'

Format string passed to fprintf to write the Init
section of the synthesis script. The default string is
a synthesis project creation command. The implicit
argument is the top-level module or entity name.

10-7

10 Generating Scripts for HDL Simulators and Synthesis Tools

Property Name and Default Description

Name: 'HDLSynthCmd'

Default: 'add_file %s\n'

Format string passed to fprintf to write the Cmd
section of the synthesis script. The argument is the
file name of the entity or module.

Name: 'HDLSynthTerm'

Default:

['set_option -technology VIRTEX2\n',...

'set_option -part XC2V500\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

Format string passed to fprintf to write the Term
section of the synthesis script.

Example
The following example specifies a ModelSim command for the Init phase of a
compilation script for VHDL code generated from the subsystem system.

makehdl(system, 'HDLCompileInit', 'vlib mydesignlib\n')

The following example lists the resultant script, system_compile.do.

vlib mydesignlib
vcom system.vhd

Controlling Script Generation with the EDA Tool
Scripts GUI Panel
The EDA Tool Scripts panel of the Simulink HDL Coder GUI lets you set
all options that control generation of script files. These options correspond
to the properties described in “Properties for Controlling Script Generation”
on page 10-5

To view and set options in the EDA Tool Scripts GUI panel:

10-8

Custom Script Generation

1 Select Configuration Parameters from the Simulation menu in the
model window.

The Configuration Parameters dialog box opens with the Solver options
pane displayed.

2 Click the EDA Tool Scripts entry in the Select tree in the left panel of the
Configuration Parameters dialog box. By default, the EDA Tool Scripts
pane is displayed, with the Compilation script options group selected, as
shown in the following figure.

3 The Generate EDA scripts option controls the generation of script files.
By default, this option is selected.

10-9

10 Generating Scripts for HDL Simulators and Synthesis Tools

If you want to disable script generation, deselect this option and click
Apply.

4 The list on the left of the EDA Tool Scripts pane lets you select from
several categories of options. Select a category and set the options as
desired. The categories are

• Compilation script: Options related to customizing scripts for
compilation of generated VHDL or Verilog code. See “Compilation Script
Options” on page 10-10 for further information.

• Simulation script: Options related to customizing scripts for HDL
simulators. See “Simulation Script Options” on page 10-12 for further
information.

• Synthesis script: Options related to customizing scripts for synthesis
tools. See “Synthesis Script Options” on page 10-14 for further
information.

Compilation Script Options
The following figure shows the Compilation script pane, with all options
set to their default values.

10-10

Custom Script Generation

The following table summarizes the Compilation script options.

Option and Default Description

Compile file postfix’

'_compile.do'

Postfix string appended to the filter name or test bench
name to form the script file name.

Name: Compile initialization

Default:'vlib work\n'

Format string passed to fprintf to write the Init
section of the compilation script.

10-11

10 Generating Scripts for HDL Simulators and Synthesis Tools

Option and Default Description

Name: Compile command for VHDL

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the Cmd
section of the compilation script for VHDL files. The
two arguments are the contents of the Simulator
flags option and the filename of the current entity or
module. To omit the flags, set Simulator flags to ''
(the default).

Name: Compile command for
Verilog

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the Cmd
section of the compilation script for Verilog files. The
two arguments are the contents of the Simulator
flags option and the filename of the current entity or
module. To omit the flags, set Simulator flags to ''
(the default).

Name:Compile termination

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Simulation Script Options
The following figure shows the Simulation script pane, with all options
set to their default values.

10-12

Custom Script Generation

The following table summarizes the Simulation script options.

Option and Default Description

Simulation file postfix

'_sim.do'

Postfix string appended to the filter name or test bench
name to form the script file name.

Simulation initialization

Default:

['onbreak resume\nonerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.

Simulation command

Default: 'vsim work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.

10-13

10 Generating Scripts for HDL Simulators and Synthesis Tools

Option and Default Description

Simulation waveform viewing
command

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command. The
top-level module or entity signal names are implicit
arguments.

Simulation termination

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script.

Synthesis Script Options
The following figure shows the Synthesis script pane, with all options set to
their default values.

The following table summarizes the Synthesis script options.

10-14

Custom Script Generation

Option Name and Default Description

Name: Synthesis initialization

Default: 'project -new %s.prj\n'

Format string passed to fprintf to write the Init
section of the synthesis script. The default string is
a synthesis project creation command. The implicit
argument is the top-level module or entity name.

Name: Synthesis command

Default: 'add_file %s\n'

Format string passed to fprintf to write the Cmd
section of the synthesis script. The argument is the
filename of the entity or module.

Name: Synthesis termination

Default:

['set_option -technology VIRTEX2\n',...

'set_option -part XC2V500\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

Format string passed to fprintf to write the Term
section of the synthesis script.

10-15

10 Generating Scripts for HDL Simulators and Synthesis Tools

10-16

11

Properties — By Category

Language Selection Properties
(p. 11-2)

Properties for selecting language of
generated HDL code

File Naming and Location Properties
(p. 11-2)

Properties that name and specify
location of generated files

Reset Properties (p. 11-2) Properties that specify reset signals
in generated code

Header Comment and General
Naming Properties (p. 11-3)

Properties affecting generation
of header comments and process,
module, component instance, and
other name strings

Script Generation Properties
(p. 11-4)

Properties affecting generation
of script files for simulation and
synthesis tools

Port Properties (p. 11-5) Properties that specify port
characteristics in generated code

Advanced Coding Properties (p. 11-5) Advanced HDL coding properties

Test Bench Properties (p. 11-7) Properties that specify generated
test bench code

Generated Model Properties (p. 11-7) Properties for controlling naming
and appearance of generated models

11 Properties — By Category

Language Selection Properties
TargetLanguage Specify HDL language to use for

generated code

File Naming and Location Properties
HDLMapPostfix Specify postfix string appended to

file name for generated mapping file

TargetDirectory Identify directory into which
generated output files are written

VerilogFileExtension Specify file type extension for
generated Verilog files

VHDLFileExtension Specify file type extension for
generated VHDL files

Reset Properties
ResetAssertedLevel Specify asserted (active) level of

reset input signal

ResetType Specify whether to use asynchronous
or synchronous reset logic when
generating HDL code for registers

ResetValue Specify constant value to which test
bench forces reset input signals

11-2

Header Comment and General Naming Properties

Header Comment and General Naming Properties
ClockProcessPostfix Specify string to append to HDL

clock process names

EntityConflictPostfix Specify string to append to duplicate
VHDL entity or Verilog module
names

InstancePrefix Specify string prefixed to generated
component instance names

PackagePostfix Specify string to append to specified
model or subsystem name to form
name of VHDL package file

ReservedWordPostfix Specify string to append to value
names, postfix values, or labels that
are VHDL or Verilog reserved words

SplitArchFilePostfix Specify string to append to specified
name to form name of file containing
model’s VHDL architecture

SplitEntityArch Specify whether generated VHDL
entity and architecture code is
written to single VHDL file or to
separate files

SplitEntityFilePostfix Specify string to append to specified
model name to form name of
generated VHDL entity file

VectorPrefix Specify string prefixed to vector
names in generated code

11-3

11 Properties — By Category

Script Generation Properties
EDAScriptGeneration Enable or disable generation of

script files for third-party tools

HDLCompileFilePostfix Specify postfix string appended to
file name for generated ModelSim
compilation scripts

HDLCompileInit Specify string written to
initialization section of compilation
script

HDLCompileTerm Specify string written to termination
section of compilation script

HDLCompileVerilogCmd Specify command string written to
compilation script for Verilog files

HDLCompileVHDLCmd Specify command string written to
compilation script for VHDL files

HDLSimCmd Specify simulation command written
to simulation script

HDLSimFilePostfix Specify postfix string appended to
file name for generated ModelSim
test bench simulation scripts

HDLSimInit Specify string written to
initialization section of simulation
script

HDLSimTerm Specify string written to termination
section of simulation script

HDLSimViewWaveCmd Specify waveform viewing command
written to simulation script

HDLSynthCmd Specify command written to
synthesis script

HDLSynthFilePostfix Specify postfix string appended to
file name for generated Synplify
synthesis scripts

11-4

Port Properties

HDLSynthInit Specify string written to
initialization section of synthesis
script

HDLSynthTerm Specify string written to termination
section of synthesis script

Port Properties
ClockEnableInputPort Name HDL port for model’s clock

enable input signals

ClockEnableOutputPort Specify name of clock enable output
port

EnablePrefix Specify base name string for internal
clock enables in generated code

InputType Specify HDL data type for model’s
input ports

OutputType Specify HDL data type for model’s
output ports

ResetInputPort Name HDL port for model’s reset
input

Advanced Coding Properties
BlockGenerateLabel Specify string to append to block

labels used for HDL GENERATE
statements

CastBeforeSum Enable or disable type casting
of input values for addition and
subtraction operations before
execution of operation

11-5

11 Properties — By Category

CheckHDL Check model or subsystem for HDL
code generation compatibility

HDLControlfiles Attach code generation control file
to Simulink model

InlineConfigurations Specify whether generated VHDL
code includes inline configurations

InstanceGenerateLabel Specify string to append to instance
section labels in VHDL GENERATE
statements

LoopUnrolling Specify whether VHDL FOR and
GENERATE loops are unrolled and
omitted from generated VHDL code

OutputGenerateLabel Specify string that labels output
assignment block for VHDL
GENERATE statements

SafeZeroConcat Specify syntax for concatenated
zeros in generated VHDL code

UseAggregatesForConst Specify whether all constants are
represented by aggregates, including
constants that are less than 32 bits

UserComment Specify comment line in header of
generated HDL and test bench files

UseRisingEdge Specify VHDL coding style used
to check for rising edges when
operating on registers

UseVerilogTimescale Use compiler `timescale directives
in generated Verilog code

Verbosity Specify level of detail for messages
displayed during code generation

11-6

Test Bench Properties

Test Bench Properties
ClockHighTime Specify period, in nanoseconds,

during which test bench drives clock
input signals high (1)

ClockInputPort Name HDL port for model’s clock
input signals

ClockLowTime Specify period, in nanoseconds,
during which test bench drives clock
input signals low (0)

ForceClock Specify whether test bench forces
clock input signals

ForceClockEnable Specify whether test bench forces
clock enable input signals

ForceReset Specify whether test bench forces
reset input signals

HoldTime Specify hold time for input signals
and forced reset input signals

SimulatorFlags Specify simulator flags to apply to
your generated test bench

TestBenchPostFix Specify suffix to test bench name

TestBenchReferencePostFix Specify string appended to names of
reference signals generated in test
bench code

Generated Model Properties
CodeGenerationOutput Control production of generated code

and display of generated model

Generatedmodelname Specify name of generated model

11-7

11 Properties — By Category

Generatedmodelnameprefix Specify prefix to name of generated
model

Highlightancestors Highlight ancestors of blocks in
generated model that differ from
original model

Highlightcolor Specify color for highlighted blocks
in generated model

11-8

12

Properties — Alphabetical
List

BlockGenerateLabel

Purpose Specify string to append to block labels used for HDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to block labels used for HDL GENERATE
statements. The default string is _gen.

See Also InstanceGenerateLabel, OutputGenerateLabel

12-2

CastBeforeSum

Purpose Enable or disable type casting of input values for addition and
subtraction operations before execution of operation

Settings 'on'(default)

Typecast input values in addition and subtraction operations to the
result type before operating on the values.

'off'

Preserve the types of input values during addition and subtraction
operations and then convert the result to the result type.

See Also InlineConfigurations, LoopUnrolling, SafeZeroConcat,
UseAggregatesForConst, UseRisingEdge, UseVerilogTimescale

12-3

CheckHDL

Purpose Check model or subsystem for HDL code generation compatibility

Settings 'on'

Check the model or subsystem for HDL compatibility before generating
code, and report any problems encountered. This is equivalent to
executing the checkhdl function before calling makehdl.

'off' (default)

Do not check the model or subsystem for HDL compatibility before
generating code.

See Also checkhdl, makehdl

12-4

ClockEnableInputPort

Purpose Name HDL port for model’s clock enable input signals

Settings 'string'

The default name for the model’s clock enable input port is clk_enable.

If you override the default with (for example) the string
'filter_clock_enable' for the generating subsystem filter_subsys,
the generated entity declaration might look as follows:

ENTITY filter_subsys IS

PORT(clk : IN std_logic;

filter_clock_enable : IN std_logic;

reset : IN std_logic;

filter_subsys_in : IN std_logic_vector (15 DOWNTO 0);

filter_subsys_out : OUT std_logic_vector (15 DOWNTO 0);

);

END filter_subsys;

If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid
VHDL or Verilog identifier. For example, if you specify the reserved
word signal, the resulting name string would be signal_rsvd. See
ReservedWordPostfix for more information.

Usage
Notes

The clock enable signal is asserted active high (1). Thus, the input value
must be high for the generated entity’s registers to be updated.

See Also ClockInputPort, InputType, OutputType, ResetInputPort

12-5

ClockEnableOutputPort

Purpose Specify name of clock enable output port

Settings 'string'

The default name for the generated clock enable output port is ce_out.

A clock enable output is generated when the design requires one.

12-6

ClockHighTime

Purpose Specify period, in nanoseconds, during which test bench drives clock
input signals high (1)

Settings ns

The default is 5.

The ClockHighTime and ClockLowTime properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a
square wave (50% duty cycle) with a period of 10 ns.

Usage
Notes

Simulink HDL Coder ignores this property if ForceClock is set to 'off'.

See Also ClockLowTime, ForceClock, ForceClockEnable, ForceReset, HoldTime

12-7

ClockInputPort

Purpose Name HDL port for model’s clock input signals

Settings 'string'

The default clock input port name is clk.

If you override the default with (for example) the string 'filter_clock'
for the generated entity my_filter, the generated entity declaration
might look as follows:

ENTITY my_filter IS

PORT(filter_clock : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

my_filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_En15

my_filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_En15

);

END my_filter;

If you specify a string that is a VHDL reserved word, the code generator
appends a reserved word postfix string to form a valid VHDL identifier.
For example, if you specify the reserved word signal, the resulting
name string would be signal_rsvd. See ReservedWordPostfix for
more information.

See Also ClockEnableInputPort, InputType, OutputType

12-8

ClockLowTime

Purpose Specify period, in nanoseconds, during which test bench drives clock
input signals low (0)

Settings The default is 5 ns.

The ClockHighTime and ClockLowTime properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a
square wave (50% duty cycle) with a period of 10 ns.

Usage
Notes

Simulink HDL Coder ignores this property if ForceClock is set to 'off'.

See Also ClockHighTime, ForceClock, ForceClockEnable, ForceReset,
HoldTime

12-9

ClockProcessPostfix

Purpose Specify string to append to HDL clock process names

Settings 'string'

The default postfix is _process.

Simulink HDL Coder uses process blocks for register operations.
The label for each of these blocks is derived from a register name
and the postfix _process. For example, the coder derives the label
delay_pipeline_process in the following block declaration from the
register name delay_pipeline and the default postfix string _process:

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

.

.

.

See Also PackagePostfix, ReservedWordPostfix

12-10

CodeGenerationOutput

Purpose Control production of generated code and display of generated model

Settings 'string'

'GenerateHDLCode' (default)

Generate code but do not display the generated model.

'GenerateHDLCodeAndDisplayGeneratedModel'

Generate both code and model, and display model when completed.

'DisplayGeneratedModelOnly'

Create and display generated model, but do not proceed to code
generation.

See Also “Defaults and Options for Generated Models” on page 5-12

12-11

EDAScriptGeneration

Purpose Enable or disable generation of script files for third-party tools

Settings 'on' (default)

Enable generation of script files.

'off'

Disable generation of script files.

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-12

EnablePrefix

Purpose Specify base name string for internal clock enables in generated code

Settings 'string'

Specify the string used as the base name for internal clock enables and
other flow control signals in generated code. The default string is 'enb'.

Usage
Notes

Where only a single clock enable is generated, EnablePrefix specifies
the signal name for the internal clock enable signal.

In some cases multiple clock enables are generated (for example, when
a cascade block implementation for certain blocks is specified). In such
cases, EnablePrefix specifies a base signal name for the first clock
enable that is generated. For other clock enable signals, numeric tags
are appended to EnablePrefix to form unique signal names. For
example, the following code fragment illustrates two clock enables that
were generated when EnablePrefix was set to 'test_clk_enable' :

COMPONENT Timing_Controller
PORT(clk : IN std_logic;

reset : IN std_logic;
clk_enable : IN std_logic;
test_clk_enable : OUT std_logic;
test_clk_enable_5_1_0 : OUT std_logic
);

END COMPONENT;

12-13

EntityConflictPostfix

Purpose Specify string to append to duplicate VHDL entity or Verilog module
names

Settings 'string'

The specified postfix resolves duplicate VHDL entity or Verilog module
names. The default string is _entity.

For example, if Simulink HDL Coder detects two entities with the
name MyFilt, the coder names the first entity MyFilt and the second
instance MyFilt_entity.

See Also PackagePostfix, ReservedWordPostfix

12-14

ForceClock

Purpose Specify whether test bench forces clock input signals

Settings 'on' (default)

Specify that the test bench forces the clock input signals. When this
option is set, the clock high and low time settings control the clock
waveform.

'off'

Specify that a user-defined external source forces the clock input signals.

See Also ClockLowTime, ClockHighTime, ForceClockEnable, ForceReset,
HoldTime

12-15

ForceClockEnable

Purpose Specify whether test bench forces clock enable input signals

Settings 'on' (default)

Specify that the test bench forces the clock enable input signals to
active high (1) or active low (0), depending on the setting of the clock
enable input value.

'off'

Specify that a user-defined external source forces the clock enable input
signals.

See Also ClockHighTime, ClockLowTime, ForceClock, HoldTime

12-16

ForceReset

Purpose Specify whether test bench forces reset input signals

Settings 'on' (default)

Specify that the test bench forces the reset input signals. If you enable
this option, you can also specify a hold time to control the timing of
a reset.

'off'

Specify that a user-defined external source forces the reset input signals.

See Also ClockHighTime, ClockLowTime, ForceClock, HoldTime

12-17

Generatedmodelname

Purpose Specify name of generated model

Settings 'string'

By default, the name of a generated model is the same as that of the
original model. Assign a string value to Generatemodelname to override
the default.

See Also “Defaults and Options for Generated Models” on page 5-12

12-18

Generatedmodelnameprefix

Purpose Specify prefix to name of generated model

Settings 'string'

The default prefix is 'gm_'.

See Also “Defaults and Options for Generated Models” on page 5-12

12-19

HDLCompileInit

Purpose Specify string written to initialization section of compilation script

Settings 'string'

The default string is 'vlib work\n'.

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-20

HDLCompileTerm

Purpose Specify string written to termination section of compilation script

Settings 'string'

The default is the null string ('').

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-21

HDLCompileFilePostfix

Purpose Specify postfix string appended to file name for generated ModelSim
compilation scripts

Settings 'string'

The default postfix is _compile.do.

For example, if the name of the device under test or test bench is
my_design, Simulink HDL Coder adds the postfix _compile.do to form
the name my_design_compile.do.

12-22

HDLCompileVerilogCmd

Purpose Specify command string written to compilation script for Verilog files

Settings 'string'

The default string is 'vlog %s %s\n'.

The two arguments are the contents of the 'SimulatorFlags' property
and the file name of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-23

HDLCompileVHDLCmd

Purpose Specify command string written to compilation script for VHDL files

Settings 'string'

The default string is 'vcom %s %s\n'.

The two arguments are the contents of the 'SimulatorFlags' property
and the file name of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-24

HDLControlfiles

Purpose Attach code generation control file to Simulink model

Settings {'string'}

Pass in a cell array containing a string that specifies a control file to
be attached to the current model. Defaults are

• File name extension: .m

• Path: the control file is assumed to be on the MATLAB path or in
the current working directory. If the file is elsewhere, enter a full
path name.

Note The current release supports specification of a single control file.

Usage
Notes

To clear the property (so that no control file is invoked during code
generation), pass in a cell array containing the null string, as in the
following example:

makehdl(gcb,'HDLControlFiles',{''});

See Also For a detailed description of the structure and use of control files, see
Chapter 4, “Code Generation Control Files”.

12-25

HDLMapPostfix

Purpose Specify postfix string appended to file name for generated mapping file

Settings 'string'

The default postfix is '_map.txt'.

For example, if the name of the device under test is my_design,
Simulink HDL Coder adds the postfix _map.txt to form the name
my_design_map.txt.

12-26

HDLSimCmd

Purpose Specify simulation command written to simulation script

Settings 'string'

The default string is'vsim work.%s\n'.

The implicit argument is the top-level module or entity name.

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-27

HDLSimInit

Purpose Specify string written to initialization section of simulation script

Settings 'string'

The default string is

['onbreak resume\n',...
'onerror resume\n']

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-28

HDLSimFilePostfix

Purpose Specify postfix string appended to file name for generated ModelSim
test bench simulation scripts

Settings 'string'

The default postfix is _sim.do.

For example, if the name of your test bench file is my_design,
Simulink HDL Coder adds the postfix _sim.do to form the name
my_design_tb_sim.do.

12-29

HDLSimTerm

Purpose Specify string written to termination section of simulation script

Settings 'string'

The default string is 'run -all\n'.

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-30

HDLSimViewWaveCmd

Purpose Specify waveform viewing command written to simulation script

Settings 'string'

The default string is 'add wave sim:%s\n'

The implicit argument is the top-level module or entity name.

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-31

HDLSynthCmd

Purpose Specify command written to synthesis script

Settings 'string'

The default string is 'add_file %s\n'.

The implicit argument is the file name of the entity or module.

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-32

HDLSynthInit

Purpose Specify string written to initialization section of synthesis script

Settings 'string'

The default string is 'project -new %s.prj\n', which is a synthesis
project creation command.

The implicit argument is the top-level module or entity name.

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-33

HDLSynthFilePostfix

Purpose Specify postfix string appended to file name for generated Synplify
synthesis scripts

Settings 'string'

The default postfix is _synplify.tcl.

For example, if the name of the device under test is my_design,
Simulink HDL Coder adds the postfix _synplify.tcl to form the name
my_design_synplify.tcl.

12-34

HDLSynthTerm

Purpose Specify string written to termination section of synthesis script

Settings 'string'

The default string is

['set_option -technology VIRTEX2\n',...

'set_option -part XC2V500\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

See Also Chapter 10, “Generating Scripts for HDL Simulators and Synthesis
Tools”

12-35

Highlightancestors

Purpose Highlight ancestors of blocks in generated model that differ from
original model

Settings 'on' (default)

Highlight blocks in a generated model that differ from the original
model, and their ancestor (parent) blocks in the model hierarchy.

'off'

Highlight only the blocks in a generated model that differ from the
original model without highlighting their ancestor (parent) blocks in
the model hierarchy.

See Also “Defaults and Options for Generated Models” on page 5-12

12-36

Highlightcolor

Purpose Specify color for highlighted blocks in generated model

Settings 'string'

The default color specification is 'cyan'.

Specify the color as one of the following color string values:

• cyan

• yellow

• magenta

• red

• green

• blue

• white

• black

See Also “Defaults and Options for Generated Models” on page 5-12

12-37

HoldTime

Purpose Specify hold time for input signals and forced reset input signals

Settings ns

Specify the number of nanoseconds (a positive integer) during which the
model’s data input signals and forced reset input signals are held past
the clock rising edge. The default is 2.

This option applies to reset input signals only if forced resets are
enabled.

Usage
Notes

The hold time is the amount of time that reset input signals and input
data are held past the clock rising edge. The following figures show the
application of a hold time (thold) for reset and data input signals when
the signals are forced to active high and active low.

�����

��	�
����

��
��������

����

����

��	�
����

��
�������

Hold Time for Reset Input Signals

12-38

HoldTime

�����

��
�����

����

Hold Time for Data Input Signals

Note A reset signal is always asserted for two cycles plus thold.

See Also ClockHighTime, ClockLowTime, ForceClock

12-39

InlineConfigurations

Purpose Specify whether generated VHDL code includes inline configurations

Settings 'on' (default)

Include VHDL configurations in any file that instantiates a component.

'off'

Suppress the generation of configurations and require user-supplied
external configurations. Use this setting if you are creating your own
VHDL configuration files.

Usage
Notes

VHDL configurations can be either inline with the rest of the VHDL
code for an entity or external in separate VHDL source files. By default,
Simulink HDL Coder includes configurations for a model within the
generated VHDL code. If you are creating your own VHDL configuration
files, you should suppress the generation of inline configurations.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge

12-40

InputType

Purpose Specify HDL data type for model’s input ports

Settings 'std_logic_vector'

Specifies VHDL type STD_LOGIC_VECTOR for the model’s input ports.

'signed/unsigned'

Specifies VHDL type SIGNED or UNSIGNED for the model’s input ports.

'wire' (Verilog)

If the target language is Verilog, the data type for all ports is wire. This
property is not modifiable in this case.

See Also ClockEnableInputPort, , OutputType

12-41

InstanceGenerateLabel

Purpose Specify string to append to instance section labels in VHDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to instance section labels in VHDL
GENERATE statements. The default string is _gen.

See Also BlockGenerateLabel, OutputGenerateLabel

12-42

InstancePrefix

Purpose Specify string prefixed to generated component instance names

Settings 'string'

Specify a string to be prefixed to component instance names in
generated code. The default string is u_.

12-43

LoopUnrolling

Purpose Specify whether VHDL FOR and GENERATE loops are unrolled and
omitted from generated VHDL code

Settings 'on'

Unroll and omit FOR and GENERATE loops from the generated VHDL code.

In Verilog code, loops are always unrolled.

If you are using an electronic design automation (EDA) tool that does
not support GENERATE loops, you can enable this option to omit loops
from your generated VHDL code.

'off' (default)

Include FOR and GENERATE loops in the generated VHDL code.

Usage
Notes

The setting of this option does not affect results obtained from
simulation or synthesis of generated VHDL code.

See Also InlineConfigurations, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge

12-44

OutputGenerateLabel

Purpose Specify string that labels output assignment block for VHDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to output assignment block labels in
VHDL GENERATE statements. The default string is outputgen.

See Also BlockGenerateLabel, OutputGenerateLabel

12-45

OutputType

Purpose Specify HDL data type for model’s output ports

Settings 'std_logic_vector' (VHDL default)

Output ports have VHDL type STD_LOGIC_VECTOR.

'signed/unsigned'

Output ports have type SIGNED or UNSIGNED.

'wire' (Verilog)

If the target language is Verilog, the data type for all ports is wire. This
property is not modifiable in this case.

See Also ClockEnableInputPort, InputType

12-46

PackagePostfix

Purpose Specify string to append to specified model or subsystem name to form
name of VHDL package file

Settings 'string'

The coder applies this option only if a package file is required for the
design. The default string is _pkg.

See Also ClockProcessPostfix, EntityConflictPostfix,
ReservedWordPostfix

12-47

ReservedWordPostfix

Purpose Specify string to append to value names, postfix values, or labels that
are VHDL or Verilog reserved words

Settings 'string'

The default postfix is _rsvd.

The reserved word postfix is applied to signals and constants that have
names conflicting with VHDL or Verilog reserved words. For example,
if your generating model contains a signal named mod, Simulink HDL
Coder adds the postfix _rsvd to form the name mod_rsvd.

See Also ClockProcessPostfix, EntityConflictPostfix,
ReservedWordPostfix

12-48

ResetAssertedLevel

Purpose Specify asserted (active) level of reset input signal

Settings 'active-high' (default)

Specify that the reset input signal must be driven high (1) to reset
registers in the model. For example, the following code fragment checks
whether reset is active high before populating the delay_pipeline
register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

'active-low'

Specify that the reset input signal must be driven low (0) to reset
registers in the model. For example, the following code fragment checks
whether reset is active low before populating the delay_pipeline
register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '0' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

See Also ResetType

12-49

ResetInputPort

Purpose Name HDL port for model’s reset input

Settings 'string'

The default name for the model’s reset input port is reset.

If you override the default with (for example) the string 'chip_reset'
for the generating system myfilter, the generated entity declaration
might look as follows:

ENTITY myfilter IS

PORT(clk : IN std_logic;

clk_enable : IN std_logic;

chip_reset : IN std_logic;

myfilter_in : IN std_logic_vector (15 DOWNTO 0);

myfilter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END myfilter;

If you specify a string that is a VHDL reserved word, the code generator
appends a reserved word postfix string to form a valid VHDL identifier.
For example, if you specify the reserved word signal, the resulting
name string would be signal_rsvd. See ReservedWordPostfix for
more information.

Usage
Notes

If the reset asserted level is set to active high, the reset input signal is
asserted active high (1) and the input value must be high (1) for the
entity’s registers to be reset. If the reset asserted level is set to active
low, the reset input signal is asserted active low (0) and the input value
must be low (0) for the entity’s registers to be reset.

See Also ClockEnableInputPort, InputType, OutputType

12-50

ResetType

Purpose Specify whether to use asynchronous or synchronous reset logic when
generating HDL code for registers

Settings 'async' (default)

Use asynchronous reset logic. The following process block, generated by
a Unit Delay block, illustrates the use of asynchronous resets. When
the reset signal is asserted, the process block performs a reset, without
checking for a clock event.

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;

END PROCESS Unit_Delay1_process;

'sync'

Use synchronous reset logic. Code for a synchronous reset follows. The
following process block, generated by a Unit Delay block, checks for a
clock event, the rising edge, before performing a reset:

Unit_Delay1_process : PROCESS (clk)

BEGIN

IF rising_edge(clk) THEN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;

12-51

ResetType

END PROCESS Unit_Delay1_process;

See Also ResetAssertedLevel

12-52

ResetValue

Purpose Specify constant value to which test bench forces reset input signals

Settings 'active high' (default)

Specify that the test bench set the reset input signal to active high (1).

'active low'

Specify that the test bench set the reset input signal to active low (0).

Usage
Notes

The setting for this option must match the setting of the reset asserted
level specified for the test bench. Simulink HDL Coder ignores the
setting of this option if forced resets are disabled.

See Also ForceReset, ResetType, ResetAssertedLevel

12-53

SafeZeroConcat

Purpose Specify syntax for concatenated zeros in generated VHDL code

Settings 'on' (default)

Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically,
this syntax is preferred.

'off'

Use the syntax "000000..." for concatenated zeros. This syntax can be
easier to read and is more compact, but it can lead to ambiguous types.

See Also LoopUnrolling, UseAggregatesForConst, UseRisingEdge

12-54

SimulatorFlags

Purpose Specify simulator flags to apply to your generated test bench

Settings 'string'

Specify options that are specific to your application and the simulator
you are using. For example, if you must use the 1076–1993 VHDL
compiler, specify the flag -93.

Usage
Notes

The flags you specify with this option are added to the compilation
command in generated ModelSim .do test bench files. The
simulation command string is specified by the HDLCompileVHDLCmd or
HDLCompileVerilogCmd properties.

12-55

SplitArchFilePostfix

Purpose Specify string to append to specified name to form name of file
containing model’s VHDL architecture

Settings 'string'

The default is _arch. This option applies only if you direct Simulink
HDL Coder to place the generated VHDL entity and architecture code
in separate files.

Usage
Notes

The option applies only if you direct Simulink HDL Coder to place the
filter’s entity and architecture in separate files.

See Also SplitEntityArch, SplitEntityFilePostfix

12-56

SplitEntityArch

Purpose Specify whether generated VHDL entity and architecture code is
written to single VHDL file or to separate files

Settings 'on'

Write the generated VHDL code to a single file.

'off'(default)

Write the code for the generated VHDL entity and architecture to
separate files.

The names of the entity and architecture files derive from the base
file name (as specified by the generating model or subsystem name).
By default, postfix strings identifying the file as an entity (_entity)
or architecture (_arch) are appended to the base file name. You can
override the default and specify your own postfix string.

For example, instead of all generated code residing in MyFIR.vhd,
you can specify that the code reside in MyFIR_entity.vhd and
MyFIR_arch.vhd.

Note This property is specific to VHDL code generation. It does not
apply to Verilog code generation and should not be enabled when
generating Verilog code.

See Also SplitArchFilePostfix, , SplitEntityFilePostfix

12-57

SplitEntityFilePostfix

Purpose Specify string to append to specified model name to form name of
generated VHDL entity file

Settings 'string'

The default is _entity. This option applies only if you direct Simulink
HDL Coder to place the generated VHDL entity and architecture code
in separate files.

See Also SplitArchFilePostfix, SplitEntityArch

12-58

TargetDirectory

Purpose Identify directory into which generated output files are written

Settings 'string'

Specify a subdirectory under the current working directory into which
generated files are written. The string can specify a complete path
name. The default string is hdlsrc.

If the target directory does not exist, Simulink HDL Coder creates it.

See Also VerilogFileExtension, VHDLFileExtension

12-59

TargetLanguage

Purpose Specify HDL language to use for generated code

Settings 'VHDL' (default)

Generate VHDL filter code.

'verilog'

Generate Verilog filter code.

12-60

TestBenchPostFix

Purpose Specify suffix to test bench name

Settings 'string'

The default postfix is '_tb'.

For example, if the name of your DUT is my_test, Simulink HDL Coder
adds the postfix _tb to form the name my_test_tb.

12-61

TestBenchReferencePostFix

Purpose Specify string appended to names of reference signals generated in
test bench code

Settings 'string'

The default postfix is '_ref'.

Reference signal data is represented as arrays in the generated test
bench code. The string specified by TestBenchReferencePostFix is
appended to the generated signal names.

12-62

UseAggregatesForConst

Purpose Specify whether all constants are represented by aggregates, including
constants that are less than 32 bits

Settings 'on'

Specify that all constants, including constants that are less than 32
bits, be represented by aggregates. The following VHDL constant
declarations show scalars less than 32 bits being declared as aggregates:

CONSTANT coeff1 :signed(15 DOWNTO 0) := (4 DOWNTO 2 => '0', 0 =>'0', OTHERS => ', ');

CONSTANT coeff2 :signed(15 DOWNTO 0) := (6 => '0', 4 DOWNTO 3 => '0',OTHERS => ', ');

'off' (default)

Specify that the coder represent constants less than 32 bits as scalars
and constants greater than or equal to 32 bits as aggregates. The
following VHDL constant declarations are examples of declarations
generated by default for values less than 32 bits:

CONSTANT coeff1 :signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15

CONSTANT coeff2 :signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15

See Also LoopUnrolling, SafeZeroConcat, UseRisingEdge

12-63

UserComment

Purpose Specify comment line in header of generated HDL and test bench files

Settings 'string'

The comment is generated in each of the generated code and test
bench files. The code generator adds leading comment characters as
appropriate for the target language. When newlines or line feeds are
included in the string, the code generator emits single-line comments
for each newline.

For example, the following makehdl command adds two comment lines
to the header in a generated VHDL file.

makehdl(gcb,'UserComment','This is a comment line.\nThis is a second line.')

The resulting header comment block for subsystem symmetric_fir
would appear as follows:

-- ---

--

-- Module: symmetric_fir

-- Simulink Path: sfir_fixed/symmetric_fir

-- Created: 2006-11-20 15:55:25

-- Hierarchy Level: 0

--

-- This is a comment line.

-- This is a second line.

--

-- Simulink model description for sfir_fixed:

-- This model shows how to use Simulink HDL Coder to check, generate,

-- and verify HDL for a fixed-point symmetric FIR filter.

--

-- ---

12-64

UseRisingEdge

Purpose Specify VHDL coding style used to check for rising edges when
operating on registers

Settings 'on'

Use the VHDL rising_edge function to check for rising edges when
operating on registers. The following code, generated from a Unit Delay
block, tests rising_edge as shown in the following PROCESS block:

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF rising_edge(clk) THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;

END PROCESS Unit_Delay1_process;

'off' (default)

Check for clock events when operating on registers. The following code,
generated from a Unit Delay block, checks for a clock event as shown in
the ELSIF statement of the following PROCESS block:

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;

12-65

UseRisingEdge

END PROCESS Unit_Delay1_process;

Usage
Notes

The two coding styles have different simulation behavior when the clock
transitions from 'X' to '1'.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst

12-66

UseVerilogTimescale

Purpose Use compiler `timescale directives in generated Verilog code

Settings 'on' (default)

Use compiler `timescale directives in generated Verilog code.

'off'

Suppress the use of compiler `timescale directives in generated Verilog
code.

Usage
Notes

The `timescale directive provides a way of specifying different delay
values for multiple modules in a Verilog file. This setting does not affect
the generated test bench.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge

12-67

VectorPrefix

Purpose Specify string prefixed to vector names in generated code

Settings 'string'

Specify a string to be prefixed to vector names in generated code. The
default string is vector_of_.

12-68

Verbosity

Purpose Specify level of detail for messages displayed during code generation

Settings n

The default for n is 0 (minimal messages displayed).

When Verbosity is set to 0, minimal code generation progress messages
are displayed in the MATLAB window. When Verbosity is set to 1,
more detailed progress messages are displayed.

12-69

VerilogFileExtension

Purpose Specify file type extension for generated Verilog files

Settings 'string'

The default file type extension for generated Verilog files is .v.

See Also TargetDirectory

12-70

VHDLFileExtension

Purpose Specify file type extension for generated VHDL files

Settings 'string'

The default file type extension for generated VHDL files is .vhd.

See Also TargetDirectory

12-71

13

Functions — Alphabetical
List

checkhdl

Purpose Check subsystem or model for compatibility with HDL code generation

Syntax checkhdl
checkhdl(bdroot)
checkhdl('modelname')
checkhdl('modelname/subsys')
checkhdl(gcb)
output = checkhdl(arg)

Description checkhdl is a utility that checks a subsystem or model for compatibility
with HDL code generation. If any incompatibilities are detected
(for example, use of unsupported blocks or illegal data type usage),
checkhdl displays information on the blocks and potential problems
in an HTML report.

checkhdl examines (by default) the current Simulink model for
compatibility with HDL code generation.

checkhdl(bdroot) examines the current Simulink model for
compatibility with HDL code generation.

checkhdl('modelname') examines the Simulink model explicitly
specified by 'modelname'for compatibility with HDL code generation.

checkhdl('modelname/subsys') examines a specified subsystem
within the Simulink model specified by 'modelname' for compatibility
with HDL code generation.

'subsys' specifies the name of the subsystem to be checked. In the
current release, 'subsys' must be at the top (root) level of the current
Simulink model; it cannot be a subsystem nested at a lower level of
the model hierarchy.

checkhdl(gcb) examines the currently selected subsystem within the
current Simulink model for compatibility with HDL code generation.

checkhdl generates an HTML HDL Code Generation Check Report.
The report file-naming convention is system_report.html, where
system is the name of the subsystem or model that was passed in to

13-2

checkhdl

checkhdl. The report is written to the target directory. checkhdl also
displays the report in a browser window.

The report is in table format. Each entry in the table is hyperlinked
to a block or subsystem that caused a problem. When you click the
hyperlink, Simulink highlights and displays the block of interest
(provided that the model referenced by the report is open).

If no errors are encountered, the report contains only a hyperlink to the
subsystem or model that was checked.

Alternatively, you can also specify an output argument, using the
following syntax:

output = checkhdl(arg)

where arg specifies a model or subsystem in any of the forms described
previously.

When an output argument is specified, checkhdl returns a 1xN
MATLAB struct array with one entry for each error, warning or
message. In this case, no report is generated (see “Examples” on page
13-4).

The MathWorks strongly recommends that you use checkhdl to check
your subsystems or models before generating HDL code.

checkhdl reports three levels of compatibility problems:

• Errors: Errors will cause makehdl to error out. These issues must be
fixed before HDL code can be generated. A typical error would be the
use of an unsupported data type. For example, the current release
does not support complex numbers.

• Warnings: Warnings may cause problems in the generated code, but
generally allow HDL code generation to continue. For example, the
presence of an unsupported block in the model would raise a warning.
In this case, the code generator attempts to proceed as if the block
were not present in the design. This could lead to errors later in the
code generation process, which would then terminate.

13-3

checkhdl

• Messages: Messages are indications that the HDL code generator
may treat data types in a way that differs from what might be
expected. For example, single-precision floating-point data types are
automatically converted to double-precision because neither VHDL
nor Verilog support single-precision data types.

Note If a model or subsystem passes checkhdl without errors, that
does not imply that makehdl will complete successfully, since not all
block parameters are verified in this release. However, if checkhdl
reports an error, makehdl will not successfully complete HDL code
generation.

For convenience, checkhdl also takes the same property-value pairs as
makehdl and makehdltb.

Examples The following example checks the subsystem symmetric_fir within the
model sfir_fixed for HDL code generation compatibility. If problems
are encountered, an HTML report is generated.

checkhdl('sfir_fixed/symmetric_fir')

The following example checks the subsystem symmetric_fir_err
within the model sfir_fixed_err for HDL code generation
compatibility. Information on problems encountered is returned in the
struct output. The first element of output is then displayed.

output = checkhdl('sfir_fixed_err/symmetric_fir_err')

Starting HDL Check.

...

HDL Check Complete with 4 errors, warnings and messages.

output =

1x4 struct array with fields:

path

type

13-4

checkhdl

message

level

output(1)

ans =

path: 'sfir_fixed_err/symmetric_fir_err/Product'

type: 'block'

message: 'Unhandled mixed double and non-double datatypes at ports of block'

level: 'Error'

See Also makehdl

13-5

hdllib

Purpose Create Simulink library of blocks that support HDL code generation

Syntax hdllib

Description hdllib creates a library of blocks that are supported for HDL code
generation. The library is named hdlsupported.mdl. After the library
is generated, you must save it to a directory of your choice.

hdllib loads many Simulink libraries during the creation of the
hdlsupported library. (This will cause a license checkout.) When
hdllib completes generation of the library, it does not unload Simulink
libraries.

The hdlsupported library affords quick access to all supported blocks.
By constructing models using blocks from this library, you can ensure
block-level compatibility of your model with Simulink HDL Coder.

The set of supported blocks will change in future releases of Simulink
HDL Coder. To keep the hdlsupported.mdl current, The MathWorks
recommends that you rebuild the library and table each time you install
a new release.

13-6

hdlnewforeach

Purpose Generate forEach calls for insertion into code generation control files

Syntax hdlnewforeach
hdlnewforeach('blockpath')
hdlnewforeach({'blockpath1','blockpath2',...})
[cmd, impl] = hdlnewforeach
[cmd, impl] = hdlnewforeach('blockpath')
[cmd, impl] = hdlnewforeach({'blockpath1','blockpath2',...})

Description Simulink HDL Coder provides the hdlnewforeach utility to help you
construct forEach calls for use in code generation control files. Given a
selection of one or more blocks from your model, hdlnewforeach returns
the following for each selected block, as string data in the MATLAB
workspace:

• A forEach call coded with the correct modelscope, blocktype, and
default implementation arguments for the block

• (Optional) A cell array of strings enumerating the available
implementations for the block, in package.class form

hdlnewforeach returns a forEach call for each selected block in the
model. Each call is returned as a string.

hdlnewforeach('blockpath') returns a forEach call for a specified
block in the model. The call is returned as a string.

The 'blockpath' argument is a string specifying the full Simulink
path to the desired block.

hdlnewforeach({'blockpath1','blockpath2',...}) returns a
forEach call for each specified block in the model. Each call is returned
as a string.

The {'blockpath1','blockpath2',...} argument is a cell array of
strings, each of which specifies the full Simulink path to a desired block.

[cmd, impl] = hdlnewforeach returns a forEach call for each
selected block in the model to the string variable cmd. In addition, the

13-7

hdlnewforeach

call returns a cell array of cell arrays of strings (impl) enumerating the
available implementations for the block.

[cmd, impl] = hdlnewforeach('blockpath') returns a forEach call
for a specified block in the model to the string variable cmd. In addition,
the call returns a cell array of strings (impl) enumerating the available
implementations for the block.

The 'blockpath' argument is a string specifying the full Simulink
path to the desired block.

[cmd, impl] =
hdlnewforeach({'blockpath1','blockpath2',...}) returns a
forEach call for each specified block in the model to the string variable
cmd. In addition, the call returns a cell array of cell arrays of strings
(impl) enumerating the available implementations for the block.

The {'blockpath1','blockpath2',...} argument is a cell array of
strings, each of which specifies the full Simulink path to a desired block.

Usage
Notes

Before invoking hdlnewforeach, you must run checkhdl or makehdl
to build in-memory information about the model. If you do not run
checkhdl or makehdl, hdlnewforeach will display an error message
indicating that you should run checkhdl or makehdl.

hdlnewforeach returns an empty string for blocks that do not have an
HDL implementation. hdlnewforeach also returns an empty string for
subsystems, which are a special case. Subsystems do not have a default
implementation class, but special-purpose subsystems implementations
are provided (see Chapter 7, “Interfacing Subsystems and Models to
HDL Code”).

After invoking hdlnewforeach, you will generally want to insert the
forEach calls returned by the function into a control file, and use the
implementation information returned to specify a nondefault block
implementation. See “Generating Selection/Action Statements with the
hdlnewforeach Function” on page 4-17 for a worked example.

Examples The following example generates forEach commands for two explicitly
specified blocks.

13-8

hdlnewforeach

hdlnewforeach({'sfir_fixed/symmetric_fir/Add4',...

'sfir_fixed/symmetric_fir/Product2'})

ans =

c.forEach('sfir_fixed/symmetric_fir/Add4',...

'built-in/Sum', {},...

'hdldefaults.SumLinearHDLEmission', {});

c.forEach('sfir_fixed/symmetric_fir/Product2',...

'built-in/Product', {},...

'hdldefaults.ProductLinearHDLEmission', {});

The following example generates a forEach command for an explicitly
specified Sum block. The implementation information is listed after the
forEach command.

[cmd,impl] = hdlnewforeach('sfir_fixed/symmetric_fir/Add4')

cmd =

c.forEach('sfir_fixed/symmetric_fir/Add4',...

'built-in/Sum', {},...

'hdldefaults.SumLinearHDLEmission', {});

impl =

{3x1 cell}

>> impl{1}

ans =

'hdldefaults.SumTreeHDLEmission'

'hdldefaults.SumLinearHDLEmission'

'hdldefaults.SumCascadeHDLEmission'

13-9

hdlsetup

Purpose Set Simulink model parameters for HDL code generation

Syntax hdlsetup
hdlsetup('model')

Description hdlsetup changes the parameters of the current Simulink model
(bdroot) to values that are commonly used for HDL code generation.

hdlsetup('model') changes the parameters of the Simulink model
specified by the 'model' argument to values that are commonly used
for HDL code generation.

A model should be open in Simulink before you invoke the hdlsetup
command.

The hdlsetup command uses the Simulink set_param function to set
up models for HDL code generation quickly and consistently. The model
parameters settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications.

To view the complete set of model parameters affected by hdlsetup,
view hdlsetup.m in the MATLAB editor.

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of user-settable
model parameters.

13-10

makehdl

Purpose Generate HDL RTL code from Simulink model or subsystem

Syntax makehdl()
makehdl(bdroot)
makehdl('modelname')
makehdl('modelname/subsys')
makehdl(gcb)
makehdl('PropertyName', PropertyValue,...)
makehdl(bdroot, 'PropertyName', PropertyValue,...)
makehdl('modelname', 'PropertyName', PropertyValue,...)
makehdl('modelname/subsys','PropertyName',PropertyValue,...)
makehdl(gcb, 'PropertyName', PropertyValue,...)

Description makehdl generates HDL RTL code (VHDL or Verilog) from a Simulink
model or subsystem. We will refer to a model or subsystem from which
code is generated as the device under test (DUT).

makehdl() generates HDL code from the current Simulink model (by
default), using default values for all properties.

makehdl(bdroot) generates HDL code from the current Simulink
model, using default values for all properties.

makehdl('modelname') generates HDL code from the Simulink model
explicitly specified by 'modelname', using default values for all
properties.

makehdl('modelname/subsys') generates HDL code from a subsystem
within the Simulink model specified by 'modelname', using default
values for all properties.

'subsys' specifies the name of the subsystem. In the current release,
this must be a subsystem at the top (root) level of the current Simulink
model; it cannot be a subsystem nested at a lower level of the model
hierarchy.

makehdl(gcb) generates HDL code from the currently selected
subsystem within the current Simulink model, using default values
for all properties.

13-11

makehdl

makehdl('PropertyName', PropertyValue,...) generates HDL code
from the current Simulink model (by default), explicitly specifying one
or more code generation options as property/value pairs.

makehdl(bdroot, 'PropertyName', PropertyValue,...) generates
HDL code from the current Simulink model, explicitly specifying one or
more code generation options as property/value pairs.

makehdl('modelname', 'PropertyName', PropertyValue,...)
generates HDL code from the Simulink model explicitly specified by
'modelname', explicitly specifying one or more code generation options
as property/value pairs.

makehdl('modelname/subsys','PropertyName',PropertyValue,...)
generates HDL code from a subsystem within the Simulink model
specified by 'modelname', explicitly specifying one or more code
generation options as property/value pairs.

'subsys' specifies the name of the subsystem. In the current release,
this must be a subsystem at the top (root) level of the current Simulink
model; it cannot be a subsystem nested at a lower level of the model
hierarchy.

makehdl(gcb, 'PropertyName', PropertyValue,...) generates
HDL code from the currently selected subsystem within the current
Simulink model, explicitly specifying one or more code generation
options as property/value pairs.

Property/value pairs are passed in the form

'PropertyName', PropertyValue

These property settings determine characteristics of the generated code,
such as HDL element naming and whether certain optimizations are
applied. The next section, “HDL Code Generation Defaults” on page
13-13, summarizes the default actions of the code generator.

For detailed descriptions of each property and its effect on generated
code, see Chapter 12, “Properties — Alphabetical List” and Chapter
11, “Properties — By Category”.

13-12

makehdl

HDL Code Generation Defaults

This section summarizes the default actions of the code generator. Most
defaults can be overridden by passing in appropriate property/value
settings to makehdl. Chapter 12, “Properties — Alphabetical List”
describes all makehdl properties in detail.

Target Language, File Packaging and Naming

• The TargetLanguage property determines whether VHDL or
Verilog code is generated. The default is VHDL.

• makehdl writes generated files to hdlsrc, a subdirectory of the
current working directory. This directory is called the target
directory. makehdl creates a target directory if it does not
already exist.

• makehdl generates separate HDL source files for the DUT
and each subsystem within it. In addition, makehdl generates
script files for HDL simulation and synthesis tools. File names
derive from the Simulink names of the DUT. File names are
assigned by Simulink HDL Coder and are not user-assignable.
The following table summarizes file-naming conventions.

File Name

Verilog
source code

system.v, where system is the
name of the DUT.

VHDL
source code

system.vhd, where system is the
name of the DUT.

13-13

makehdl

File Name

Timing
controller
code

Timing_Controller.vhd (VHDL)
or Timing_Controller.v
(Verilog). This file contains a
module defining timing signals
(clock, reset, external clock
enable inputs and clock enable
output) in a separate entity or
module. Timing controller code
is generated if required by the
design; a purely combinatorial
model does not generate timing
controller code.

ModelSim
compilation
script

system_compile.do, where
system is the name of the DUT.

Synplify
synthesis
script

system_synplify.tcl, where
system is the name of the DUT.

VHDL
package
file

system_pkg.vhd, where system
is the name of the DUT. A package
file is generated only if the design
requires a VHDL package.

Mapping
file

system_map.txt, where system is
the name of the DUT. This report
file maps generated entities
(or modules) to the Simulink
subsystems that generated them.
See “Code Tracing Using the
Mapping File” on page 6-5.

Entities, Ports, and Signals

• Unique names are assigned to generated VHDL entities or
Verilog modules. Entity or module names are derived from the

13-14

makehdl

names of the DUT. Name conflicts are resolved by the use of a
postfix string.

• HDL port names are assigned according to the following
conventions:

HDL Port Name

Input Same as corresponding
port name on the DUT (name
conflicts resolved according to
rules of the target language)

Output Same as corresponding
port name on the DUT (name
conflicts resolved according to
rules of the target language)

Clock input clk

Clock enable input clk_enable

Clock enable output ce_out

Reset input reset

• HDL port directions and data types

— Port direction: IN or OUT, corresponding to the port on the
DUT.

— Clock, clock enable, and reset port data types: VHDL type
STD_LOGIC_VECTOR or Verilog type wire.

— Input and output port data types: VHDL type
STD_LOGIC_VECTOR or Verilog type wire. Port widths are
determined by Simulink.

• HDL signal names and data types:

— HDL signals generated from named Simulink signals retain
their signal names.

13-15

makehdl

— For unnamed Simulink signals, HDL signal names are
derived from the concatenated names of the block and port
connected to the signal in the DUT: blockname_portname.
Conflicting names are made unique according to VHDL or
Verilog rules.

— Signal data types are determined by the data type of the
corresponding Simulink signal. Each signal declaration is
annotated with a comment indicating the Simulink data
type.

General HDL Code Settings

• VHDL-specific defaults:

— Generated VHDL files include both entity and architecture
code.

— VHDL configurations are placed in any file that instantiates
a component.

— VHDL code checks for rising edges via the logic IF
clock'event AND clock='1' THEN... , when operating
on registers.

— When creating labels for VHDL GENERATE statements,
makehdl appends _gen to section and block names. makehdl
names output assignment block labels with the string
outputgen.

• A type-safe representation is used for concatenated zeros: '0'
& '0'...

• Generated code for registers uses asynchronous reset logic with
an active-high (1) reset level.

• The postfix string _process is appended to process names.

• For Microsoft Windows, carriage return/linefeed (CRLF)
character sequences are never emitted in generated code.

13-16

makehdl

Code Optimizations

• In general, generated HDL code produces results that are
bit-true and cycle-accurate with respect to the original Simulink
model (that is, the HDL code exactly reproduces simulation
results from the Simulink model).

However, some block implementations generate code
that includes certain block-specific performance and area
optimizations. These optimizations can produce numeric
results or timing differences that differ from those produced
by the original Simulink model (see Chapter 5, “Generating
Bit-True Cycle-Accurate Models”).

Examples • The following call to makehdl generates Verilog code for the
subsystem symmetric_fir within the model sfir_fixed.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage', 'Verilog')

• The following call to makehdl generates VHDL code for the current
model. Code is generated into the target directory hdlsrc, with all
code generation options set to default values.

makehdl(bdroot)

• The following call to makehdl directs the HDL compatibility checker
(see checkhdl) to check the subsystem symmetric_fir within the
model sfir_fixed before code generation starts. If no compatibility
errors are encountered, makehdl generates VHDL code for the
subsystem symmetric_fir. Code is generated into the target
directory hdlsrc, with all code generation options set to default
values.

makehdl('sfir_fixed/symmetric_fir','CheckHDL','on')

See Also makehdltb, checkhdl

13-17

makehdltb

Purpose Generate HDL test bench from Simulink model

Syntax makehdltb('modelname/subsys')

makehdltb('modelname/subsys', 'PropertyName', PropertyValue,

...)

Description makehdltb('modelname/subsys') generates an HDL test bench from
the specified subsystem within a Simulink model, using default values
for all properties. The modelname/subsys argument gives the Simulink
path to the subsystem under test. This subsystem must be at the top
(root) level of the current Simulink model. The generated test bench is
designed to interface to and validate HDL code generated from subsys
(or from a subsystem with a functionally identical public interface).

A typical practice is to generate HDL code for a subsystem, followed
immediately by generation of a test bench to validate the same
subsystem (see “Examples” on page 13-21).

Note If makehdl has not previously executed successfully within the
current MATLAB session, makehdltb generates model code before
generating the test bench code.

Test bench code and model code must both be generated in the same
target language. If the target language specified for makehdltb differs
from the target language specified for the previous makehdl execution,
makehdltb will regenerate model code in the same language specified
for the test bench.

Properties passed in to makehdl persist after makehdl executes, and
(unless explicitly overridden) will be passed in to subsequent makehdltb
calls during the same MATLAB session.

makehdltb('modelname/subsys', 'PropertyName',
PropertyValue,...) generates an HDL test bench from the specified

13-18

makehdltb

subsystem within a Simulink model, explicitly specifying one or more
code generation options as property/value pairs.

Property/value pairs are passed in the form

'PropertyName', PropertyValue

These property settings determine characteristics of the test bench
code. Many of these properties are identical to those for makehdl, while
others are specific to test bench generation (for example, options for
generation of test bench stimuli). The next section, “Defaults for Test
Bench Code Generation” on page 13-19, summarizes the defaults that
are specific to generated test bench code.

For detailed descriptions of each property and its effect on generated
code, see Chapter 12, “Properties — Alphabetical List” and Chapter
11, “Properties — By Category”.

Generating Stimulus and Output Data

makehdltb generates test data from Simulink signals connected to
inputs of the subsystem under test. Sample values for each stimulus
signal are computed and stored for each time step of the simulation. The
signal data is represented as arrays in the generated test bench code.

To help you validate generated HDL code, makehdltb also generates
output data from Simulink signals connected to outputs of the
subsystem under test. Like input data, sample values for each output
signal are computed and stored for each time step of the simulation. The
signal data is represented as arrays in the generated test bench code.

The Simulink total simulation time (set by the model’s Stop Time
parameter) determines the size of the stimulus and output data arrays.
Computation of sample values can be time-consuming. Consider
speeding up generation of signal data by entering a shorter Stop Time.

Defaults for Test Bench Code Generation

This section describes defaults that apply specifically to generation
of test bench code. makehdltb has many properties and defaults in

13-19

makehdltb

common with makehdl. See “HDL Code Generation Defaults” on page
13-13 for a summary of these common properties and defaults.

File Packaging and Naming
makehdltb generates an HDL source file containing test bench
code and arrays of stimulus and output data. In addition,
makehdltb generates script files that let you execute a ModelSim
simulation of the test bench and the HDL entity under test.
Generated test bench file names (like makehdl generated file
names) are based on the name of the DUT. The following table
summarizes the default test bench file-naming conventions.

File Name

Verilog test
bench

system_tb.v, where system is the
name of the system under test

VHDL test
bench

system_tb.vhd, where system is
the name of the system under test

ModelSim
compilation
script

system_tb_compile.do, where
system is the name of the DUT

ModelSim
simulation
script

system_tb_sim.do, where system
is the name of the DUT

Other Test Bench Settings

• The test bench forces clock, clock enable, and reset input
signals.

• The test bench forces clock enable and reset input to active
high (1).

• The clock input signal is driven high (1) for 5 nanoseconds
and low (0) for 5 nanoseconds.

• The test bench forces reset signals.

13-20

makehdltb

• The test bench applies a hold time of 2 nanoseconds to reset
and data input signals.

Examples In the following example, makehdl generates VHDL code for the
subsystem symmetric_fir. After Simulink HDL Coder indicates
successful completion of code generation, makehdltb generates a VHDL
test bench for the same subsystem.

makehdl('sfir_fixed/symmetric_fir')

Applying HDL Code Generation Control Statements

Begin VHDL Code Generation

Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

HDL Code Generation Complete.

makehdltb('sfir_fixed/symmetric_fir')

Begin TestBench Generation

Generating Test bench: hdlsrc\symmetric_fir_tb.vhd

Please wait ...

HDL TestBench Generation Complete.

See Also makehdl

13-21

A

Examples

Use this list to find examples in the documentation.

A Examples

Generating HDL Code Using MATLAB Commands
“Creating Directories and Local Model File” on page 2-6
“Initializing Model Parameters with hdlsetup” on page 2-7
“Generating a VHDL Entity from a Subsystem” on page 2-9
“Generating VHDL Test Bench Code” on page 2-11
“Verifying Generated Code” on page 2-12
“Creating the Model and Configuring General Model Settings” on page 9-9

Generating HDL Code in the Simulink Environment
“Creating Directories and Local Model File” on page 2-18
“Initializing Model Parameters With hdlsetup” on page 2-19
“Viewing Simulink HDL Coder Options in the Configuration Parameters
Dialog Box” on page 2-20
“Selecting and Checking a Subsystem for HDL Compatibility” on page 2-22
“Generating VHDL Code” on page 2-25
“Generating VHDL Test Bench Code” on page 2-27
“Verifying Generated Code” on page 2-29

Verifying Generated HDL Code in an HDL Simulator
“Simulating and Verifying Generated HDL Code” on page 2-30

A-2

Index

IndexA
addition operations

typecasting 12-3
advanced coding properties 11-5
application-specific integrated circuits

(ASICs) 1-2
architectures

setting postfix from command line 12-56
asserted level, reset

setting 12-49
asynchronous resets

setting from command line 12-51

B
bit-true cycle-accurate models

bit-true to generated HDL code 5-2
block implementations

defined 4-3
Gain 4-21
Lookup Table 4-21
Maximum 4-21
Minimum 4-21
MinMax 4-21
multiple 4-21
Product of Elements 4-21
special purpose 4-21
specifying in control file 4-17
Subsystem 4-21
Sum of Elements 4-21
summary of 4-27

block labels
for GENERATE statements 12-2
for output assignment blocks 12-45
specifying postfix for 12-2

BlockGenerateLabel property 12-2
blockscope 4-7

C
CastBeforeSum property 12-3
checkhdl function 13-2
CheckHDL property 12-4
clock

specifying high time for 12-7
specifying low time for 12-9

clock enable input port
specifying forced signals for 12-16

clock input port 12-8
specifying forced 12-15

clock process names
specifying postfix for 12-10

clock time
high 12-7
low 12-9

ClockEnableInputPort property 12-5
ClockEnableOutputPort property 12-6
ClockHighTime property 12-7
ClockInputPort property 12-8
ClockLowTime property 12-9
ClockProcessPostfix property 12-10
code generation control files. See control files
code, generated

advanced properties for customizing 11-5
CodeGenerationOutput property 12-11
comments, header

as property value 12-64
Configuration Parameters dialog box

HDL Coder options in 3-2
configurations, inline

suppressing from command line 12-40
constants

setting representation from command
line 12-63

control files
attaching to model 4-14

Index-1

Index

control object method calls in 4-7
forAll 4-11
forEach 4-7
generateHDLFor 4-11
hdlnewcontrol 4-7
set 4-11

creation of 4-13
demo for 4-3
detaching to model 4-16
GUI options for 3-8
loading 4-14
objects instantiated in 4-7
purpose of 4-2
required elements for 4-5
saving 4-13
selecting block implementations in 4-3
specifying implementation mappings in 4-3
statement types in

property setting 4-2
selection/action 4-2

D
data input port

specifying hold time for 12-38
directory, target 12-59

E
EDA Tool Scripts pane 3-19
EDAScriptGeneration property 12-12
electronic design automation (EDA) tools

generation of scripts for
customized 10-4
defaults for 10-3
overview of 10-2

Embedded MATLAB
design patterns in 9-27

Embedded MATLAB Function block

HDL code generation for 9-3
language support 9-45
limitations 9-53
setting fixed point options 9-11
tutorial example 9-5

recommended settings for HDL code
generation 9-43

EnablePrefix property 12-13
entities

setting postfix from command line 12-58
entity name conflicts 12-14
EntityConflictPostfix property 12-14

F
field programmable gate arrays (FPGAs) 1-2
file extensions

Verilog 12-70
VHDL 12-71

file location properties 11-2
file names

for architectures 12-56
for entities 12-58

file naming properties 11-2
files, generated

splitting 12-57
force reset hold time 12-38
ForceClock property 12-15
ForceClockEnable property 12-16
ForceReset property 12-17
FPGAs (field programmable gate arrays) 1-2
functions

checkhdl 13-2
hdllib 13-6
hdlnewforeach 13-7
hdlsetup 13-10
makehdl 13-11
makehdltb 13-18

Index-2

Index

G
generated models

bit-true to generated HDL code 5-2
cycle-accuracy of 5-2
default options for 5-12
display of 3-10
example of numeric differences 5-4
GUI options for 5-13
highlighted blocks in 5-12
latency example 5-8
makehdl properties for 5-14
naming conventions for 5-12
options for 5-12

Generatedmodelname property 12-18
Generatedmodelnameprefix property 12-19

H
hardware description languages (HDLs) 1-2

See also Verilog; VHDL
HDL Coder Code Generation Control File pane

File name field 3-8
Load button 3-8
Save button 3-8

HDL Coder Code Generation Output pane
Display generated model only option 3-10
Generate HDL code and display generated

model 3-10
Generate HDL code option 3-10

HDL Coder Global Settings pane 3-11
Advanced options 3-16

Cast before sum 3-16
Concatenate type safe zeros 3-16
Loop unrolling 3-16
Represent constant values by

aggregates 3-16
Use "rising edge" for registers 3-16
Use Inline VHDL configuration 3-16
Use Verilog "timescale directives" 3-16

Clock settings 3-11
Clock Enable Port 3-11
Clock Input Port 3-11
Reset Asserted Level 3-11
Reset Input Port 3-11
Reset type 3-11

General options 3-12
Clocked process postfix 3-12
Comment in header 3-12
Entity conflict postfix 3-12
Package postfix 3-12
Reserved word postfix 3-12
Split archfile postfix 3-12
Split entity and architecture 3-12
Split entity file postfix 3-12
Verilog file extension 3-12

Ports options 3-15
Clock enable output port 3-15
Input data type 3-15
Output data type 3-15

HDL Coder GUI
summary of options in 3-6

HDL Coder main pane
Generate button 3-6
Restore Factory Defaults button 3-6
Run Compatibility Checker button 3-6

HDL Coder menu 3-4
HDL Coder options

in Configuration Parameters dialog box 3-2
in Model Explorer 3-3
in Simulink Tools menu 3-4

HDL Coder Target pane
Directory option 3-9
Generate HDL for option 3-9
Language option 3-9

HDL Coder Test Bench pane 3-25
Clock high time 3-25
Clock low time 3-25
Force clock 3-25
Force clock enable 3-25

Index-3

Index

Force reset 3-25
Generate Test Bench button 3-25
Hold time (ns) 3-25
Test bench name postfix 3-25

HDLCompileFilePostfix property 12-22
HDLCompileInit property 12-20
HDLCompileTerm property 12-21
HDLCompileVerilogCmd property 12-23
HDLCompileVHDLCmd property 12-24
HDLControlfiles property 12-25
hdllib function 13-6
HDLMapPostfix property 12-26
hdlnewforeach function 13-7

example 4-17
generating forEach calls with 4-17

HDLs (hardware description languages) 1-2
See also Verilog; VHDL

hdlsetup function 13-10
HDLSimCmd property 12-27
HDLSimFilePostfix property 12-29
HDLSimInit property 12-28
HDLSimTerm property 12-30
HDLSimViewWaveCmd property 12-31
HDLSynthCmd property 12-32
HDLSynthFilePostfix property 12-34
HDLSynthInit property 12-33
HDLSynthTerm property 12-35
header comment properties 11-3
Highlightancestors property 12-36
Highlightcolor property 12-37
hold time 12-38
HoldTime property 12-38

I
implementation mapping

defined 4-3
inline configurations

specifying 12-40
InlineConfigurations property 12-40

input ports
specifying data type for 12-41

InputType property 12-41
instance sections 12-42
InstanceGenerateLabel property 12-42
InstancePrefix property 12-43

L
labels

block 12-45
language

target 12-60
language selection properties 11-2 11-7
loops

unrolling 12-44
LoopUnrolling property 12-44

M
makehdl function 13-11
makehdltb function 13-18
Model Explorer

HDL Coder options in 3-3
modelscope 4-7

N
name conflicts 12-14
names

clock process 12-10
package file 12-47

naming properties 11-3

O
output ports

specifying data type for 12-46
OutputGenerateLabel property 12-45
OutputType property 12-46

Index-4

Index

P
package files

specifying postfix for 12-47
PackagePostfix property 12-47
port properties 11-5
ports

clock enable input 12-5
clock input 12-8
input 12-41
output 12-46
reset input 12-50

properties
advanced coding 11-5
BlockGenerateLabel 12-2
CastBeforeSum 12-3
CheckHDL 12-4
ClockEnableInputPort 12-5
ClockEnableOutputPort 12-6
ClockHighTime 12-7
ClockInputPort 12-8
ClockLowTime 12-9
ClockProcessPostfix 12-10
CodeGenerationOutput 12-11
coding 11-5
EDAScriptGeneration 12-12
EnablePrefix 12-13
EntityConflictPostfix 12-14
file location 11-2
file naming 11-2
ForceClock 12-15
ForceClockEnable 12-16
ForceReset 12-17
generated models 11-7
Generatedmodelname 12-18
Generatedmodelnameprefix 12-19
HDLCompileFilePostfix 12-22
HDLCompileInit 12-20
HDLCompileTerm 12-21
HDLCompileVerilogCmd 12-23
HDLCompileVHDLCmd 12-24

HDLControlfiles 12-25
HDLMapPostfix 12-26
HDLSimCmd 12-27
HDLSimFilePostfix 12-29
HDLSimInit 12-28
HDLSimTerm 12-30
HDLSimViewWaveCmd 12-31
HDLSynthCmd 12-32
HDLSynthFilePostfix 12-34
HDLSynthInit 12-33
HDLSynthTerm 12-35
header comment 11-3
Highlightancestors 12-36
Highlightcolor 12-37
HoldTime 12-38
InlineConfigurations 12-40
InputType 12-41
InstanceGenerateLabel 12-42
InstancePrefix 12-43
language selection 11-2
LoopUnrolling 12-44
naming 11-3
OutputGenerateLabel 12-45
OutputType 12-46
PackagePostfix 12-47
port 11-5
ReservedWordPostfix 12-48
reset 11-2
ResetAssertedLevel 12-49
ResetInputPort 12-50
ResetType 12-51
ResetValue 12-53
SafeZeroConcat 12-54
script generation 11-4
SimulatorFlags 12-55
SplitArchFilePostfix 12-56
SplitEntityArch 12-57
SplitEntityFilePostfix 12-58
TargetDirectory 12-59
TargetLanguage 12-60

Index-5

Index

test bench 11-7
TestBenchPostfix 12-61
TestBenchReferencePostFix 12-62
UseAggregatesForConst 12-63
UserComment 12-64
UseRisingEdge 12-65
UseVerilogTimescale 12-67
VectorPrefix 12-68
Verbosity 12-69
VerilogFileExtension 12-70
VHDLFileExtension 12-71

R
reserved words

specifying postfix for 12-48
ReservedWordPostfix property 12-48
reset input port 12-50
reset properties 11-2
ResetAssertedLevel property 12-49
ResetInputPort property 12-50
resets

setting asserted level for 12-49
specifying forced 12-17
types of 12-51

ResetType property 12-51
ResetValue property 12-53
restoring factory default options 4-16

S
SafeZeroConcat property 12-54
script generation properties 11-4
sections

instance 12-42
SimulatorFlags property 12-55
Simulink HDL Coder

demos 1-9
features of 1-3
installing 1-8

online help 1-9
prerequisite knowledge for 1-6
software requirements for 1-7
Stateflow support for 8-2
user profiles for 1-6
Verilog version compatibility 1-8
VHDL version compatibility 1-8
what is 1-2

SplitArchFilePostfix property 12-56
SplitEntityArch property 12-57
SplitEntityFilePostfix property 12-58
Stateflow charts

code generation 8-2
requirements for 8-5
restrictions on 8-5

subtraction operations
typecasting 12-3

synchronous resets
setting from command line 12-51

T
target directory

GUI option for 3-9
target language

GUI option for 3-9
TargetDirectory property 12-59
TargetLanguage property 12-60
test bench properties 11-7
test benches

specifying clock enable input for 12-16
specifying forced clock input for 12-15
specifying forced resets for 12-17

TestBenchPostfix property 12-61
TestBenchReferencePostFix property 12-62
time

clock high 12-7
clock low 12-9
hold 12-38

timescale directives

Index-6

Index

specifying use of 12-67
typecasting 12-3

U
UseAggregatesForConst property 12-63
UserComment property 12-64
UseRisingEdge property 12-65
UseVerilogTimescale property 12-67

V
VectorPrefix property 12-68

Verbosity property 12-69
Verilog 1-2

file extension 12-70
VerilogFileExtension property 12-70
VHDL 1-2

file extension 12-71
VHDLFileExtension property 12-71

Z
zeros, concatenated 12-54

Index-7

	toc
	Getting Started
	What Is Simulink HDL Coder?
	Simulink HDL Coder in the Hardware Development Process
	Extending the Code Generation Process

	Summary of Key Features

	Expected Users and Prerequisites
	Software Requirements and Installation
	Software Requirements
	Software Requirements for Simulink HDL Coder Demos
	VHDL and Verilog Language Support

	Installing the Software

	Available Help and Demos
	Online Help
	Demos

	Introduction to HDL Code Generation
	Overview of Exercises
	The sfir_fixed Demo Model
	Generating HDL Code Using MATLAB Commands
	Creating Directories and Local Model File
	Initializing Model Parameters with hdlsetup
	Generating a VHDL Entity from a Subsystem
	Generating VHDL Test Bench Code
	Verifying Generated Code
	Generating a Verilog Module and Test Bench
	Generating a Verilog Module
	Generating and Executing a Verilog Test Bench

	Generating HDL Code in the Simulink GUI
	Creating Directories and Local Model File
	Initializing Model Parameters With hdlsetup
	Viewing Simulink HDL Coder Options in the Configuration Paramete
	Selecting and Checking a Subsystem for HDL Compatibility
	Generating VHDL Code
	Generating VHDL Test Bench Code
	Verifying Generated Code
	Generating Verilog Model and Test Bench Code

	Simulating and Verifying Generated HDL Code

	Code Generation Options in the Simulink HDL Coder GUI
	Viewing and Setting HDL Coder Options
	HDL Coder Options in the Configuration Parameters Dialog Box
	HDL Coder Options in the Model Explorer
	HDL Coder Menu

	Summary of Controls and Properties
	HDL Coder Pane
	Main Pane
	Code Generation Control File Pane
	Target Pane
	Code Generation Output Pane

	Global Settings Pane
	Clock Settings Pane
	Additional Settings : General Pane
	Additional Settings : Ports Pane
	Additional Settings : Advanced Pane

	EDA Tool Scripts Pane
	EDA Tool Scripts:Compilation Script Pane
	EDA Tool Scripts:Simulation Script Pane
	EDA Tool Scripts:Synthesis Script Pane

	Test Bench Pane

	Code Generation Control Files
	Overview of Control Files
	Selectable Block Implementations
	Implementation Mappings
	Control File Demo

	Structure of a Control File
	Code Generation Control Objects and Methods
	hdlnewcontrol
	forEach
	Resolution of modelscopes

	forAll
	set
	generateHDLFor

	Using Control Files in the Code Generation Process
	Creating a Control File
	Associating an Existing Control File with Your Model
	Detaching a Control File from Your Model

	Specifying Block Implementations and Parameters in the Control F
	Generating Selection/Action Statements with the hdlnewforeach Fu
	hdlnewforeach Example

	Blocks with Multiple Implementations
	A Note on Cascade Implementations

	Summary of Block Implementations

	Generating Bit-True Cycle-Accurate Models
	Overview of Generated Models
	Example: Numeric Differences
	Example: Latency
	Defaults and Options for Generated Models
	Defaults for Model Generation
	Model Generation
	Naming of Generated Models
	Block Highlighting

	GUI Options
	Generated Model Properties for makehdl

	HDL Compatibility, Code Tracing, and Block Support Reports
	HDL Compatibility Checker
	Code Tracing Using the Mapping File
	Supported Blocks Library

	Interfacing Subsystems and Models to HDL Code
	Overview of HDL Interfaces
	Generating a Black Box Interface for a Subsystem
	Generating Interfaces for Referenced Models
	Code Generation for HDL Cosimulation Blocks
	Pass-Through and No-Op Implementations

	Stateflow HDL Code Generation Support
	Overview of Stateflow HDL Code Generation
	Demos and Related Documentation
	Demos
	Related Documentation

	A Quick Guide to Requirements for Stateflow HDL Code Generation
	Stateflow to Simulink Interface
	Data Type Usage
	Supported Data Types

	Chart Initialization
	Registered Output
	Restrictions on Imported Code
	Other Restrictions

	Mapping Stateflow Chart Semantics to HDL
	Software Realization of Stateflow Semantics
	Hardware Realization of Stateflow Semantics
	Restrictions for HDL Realization
	Self-Contained Stateflow Charts
	Stateflow Charts Must Not Use Features Unsupported by HDL

	Using Mealy and Moore Machine Types in HDL Code Generation
	Generating HDL for a Mealy Finite State Machine
	Generating HDL Code for a Moore Finite State Machine

	Structuring a Model for HDL Code Generation
	Design Patterns Using Advanced Stateflow Features
	Temporal Logic
	Graphical Function
	Hierarchy and Parallelism
	Stateless Charts
	Truth Tables

	Generating HDL Code with the Embedded MATLAB Function Block
	Introduction
	Related Documentation and Demos
	Related Documentation
	Demos

	Tutorial Example: Incrementer
	Example Model Overview
	The Incrementer Function Code

	Setting Up
	Setting Up a Directory

	Creating the Model and Configuring General Model Settings
	Adding an Embedded MATLAB Function Block to the Model
	Setting Optimal Fixed Point Options for the Embedded MATLAB Func
	Programming the Embedded MATLAB Function
	Constructing and Connecting the DUT_eML_Block Subsystem
	Constructing the DUT_eML_Block Subsystem
	Setting Port Data Types for the Embedded MATLAB Function block
	Connecting Subsystem Ports to the Model
	Checking the Embedded MATLAB Function for Errors

	Compiling the Model and Displaying Port Data Types
	Simulating the eml_hdl_incrementer Model
	Generating HDL Code
	Selecting the Subsystem for Code Generation
	Generating VHDL Code

	Useful Embedded MATLAB Design Patterns for HDL
	The eml_hdl_design_patterns Library
	Efficient Fixed-Point Algorithms
	Fixed Point Bitwise Operators
	Using Persistent Variables to Model State
	Creating Intellectual Property with the Embedded MATLAB Function
	Modeling Control Logic and Simple Finite State Machines
	Modeling Counters
	Modeling Hardware Elements

	Recommended Practices
	Build the Embedded MATLAB Code First
	Use Optimal FIMATH Settings
	Use Optimal Fixed Point Option Settings

	Language Support
	Fixed-Point Embedded MATLAB Runtime Library Support
	Variables and Constants
	Data Type Usage
	Typing Ports, Variables and Constants
	Persistent Variables

	Arithmetic Operators
	Relational Operators
	Logical Operators
	Control Flow Statements

	Other Limitations

	Generating Scripts for HDL Simulators and Synthesis Tools
	Overview of Script Generation for EDA Tools
	Defaults for Script Generation
	Custom Script Generation
	Structure of Generated Script Files
	Properties for Controlling Script Generation
	Enabling and Disabling Script Generation
	Customizing Script Names
	Customizing Script Code
	Example

	Controlling Script Generation with the EDA Tool Scripts GUI Pane
	Compilation Script Options
	Simulation Script Options
	Synthesis Script Options

	Properties — By Category
	Language Selection Properties
	File Naming and Location Properties
	Reset Properties
	Header Comment and General Naming Properties
	Script Generation Properties
	Port Properties
	Advanced Coding Properties
	Test Bench Properties
	Generated Model Properties

	Properties — Alphabetical List
	Functions — Alphabetical List
	Examples
	Generating HDL Code Using MATLAB Commands
	Generating HDL Code in the Simulink Environment
	Verifying Generated HDL Code in an HDL Simulator

	Index

	tables
	Built-In/Gain
	Built-In/Lookup Table
	Signal Processing Blockset/Minimum
	Signal Processing Blockset/Maximum
	Built-In/MinMax
	Built-In/Product of Elements
	Built-In/Sum of Elements
	Built-In/SubSystem
	Special-Purpose Implementations

